摘要
The introduction of nitrogen significantly decreases the metal particle size and improves the performance of metal-based graphene-supported catalysts. In this work, the density functional theory is used to understand the interaction between nitrogen-doped graphene and Pd@PdO clusters. Experiments show that small size Pd@PdO clusters (1-2 nm) can be grown uniformly on nitrogen-doped graphene sheets by a facile oxidation-reduction method. The nanoscale interaction relationship between nitrogen-doped graphene and Pd@PdO clusters is investigated through X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectra (XAS). The composite catalysts are applied in Suzuki-Miyaura reactions giving high yields and good structural stability. These results have potential impact in design and optimization of future high performance catalyst materials for cross coupling reactions.