期刊文献+

APPROXIMATION BY WALSH-KACZMARZ-FEJR MEANS ON THE HARDY SPACE 被引量:1

APPROXIMATION BY WALSH-KACZMARZ-FEJR MEANS ON THE HARDY SPACE
下载PDF
导出
摘要 The main aim of this paper is to find necessary and sufficient conditions for the convergence of Walsh-Kaczmarz-Fej′er means in the terms of the modulus of continuity on the Hardy spaces Hp, when 0〈p≤1/2. The main aim of this paper is to find necessary and sufficient conditions for the convergence of Walsh-Kaczmarz-Fej′er means in the terms of the modulus of continuity on the Hardy spaces Hp, when 0〈p≤1/2.
出处 《Acta Mathematica Scientia》 SCIE CSCD 2014年第5期1593-1602,共10页 数学物理学报(B辑英文版)
基金 supported by Shota Rustaveli National Science Foundation grant no.13/06(Geometry of function spaces,interpolation and embedding theorems)
关键词 Walsh-Kaczmarz system Fej6r means martingale Hardy space modulus ofcontinuity Walsh-Kaczmarz system Fej6r means martingale Hardy space modulus ofcontinuity
  • 相关文献

参考文献36

  • 1Fine J. Cesaro summability of Walsh-Fourier series. Proc Nat Acad Sci USA, 1955, 41: 558–591.
  • 2Fridli S. On the rate of convergence of Ces′aro means of Walsh-Fourier series. J Approx Theory, 1994, 76(1): 31–53.
  • 3Fridli S, Manchuda P, Siddiqi A. Approximation by Walsh-N¨orlund means. Acta Sci Math (Szeged), 2008, 74(3/4): 593–608.
  • 4Fujii N. A maximal inequality for H1-functions on a generalized Walsh-Paley group. Proc Amer Math Soc, 1979, 77: 111–116.
  • 5G′at G. On (C, 1) summability of integrable functions with respect to the Walsh-Kaczmarz system. Studia Math, 1998, 130(2): 139–148.
  • 6G′at G, Goginava U, Nagy K. On the Marcinkiewicz-Fej′er means of double Fourier series with respect to the Walsh-Kaczmarz system. Studia Sci Math Hungarica, 2009, 46(3): 399–421.
  • 7Goginava U, Nagy K. On the maximal operator of Walsh-Kaczmarz-Fejer means. Czechoslovak Math J, 2011, 61(136): 673–686.
  • 8Goginava U. The maximal operator of the Fej′er means of the character system of the p-series field in the Kaczmarz rearrangement. Publ Math Debrecen, 2007, 71(1/2): 43–55.
  • 9Goginava U. The maximal operator of the Marcinkiewicz-Fej′er means of the d-dimensional Walsh-Fourier series. East J Approx, 2006, 12(3): 295–302.
  • 10Goginava U. Maximal operators of Fej′er-Walsh means. Acta Sci Math (Szeged), 2008, 74: 615–624.

同被引文献1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部