期刊文献+

Stability analysis of time-varying systems via parameter-dependent homogeneous Lyapunov functions

基于参数依赖齐次多项式的时变系统稳定性分析(英文)
下载PDF
导出
摘要 This paper considers the stability analysis of linear continuous-time systems, and that the dynamic matrices are affected by uncertain time-varying parameters, which are assumed to be bounded, continuously differentiable, with bounded rates of variation. First, sufficient conditions of stability for time-varying systems are given by the commonly used parameter-dependent quadratic Lyapunov function. Moreover, the use of homogeneous polynomial Lyapunov functions for the stability analysis of the linear system subject to the time-varying parametric uncertainty is introduced. Sufficient conditions to determine the sought after Lyapunov function is derived via a suitable paramenterization of polynomial homogeneous forms. A numerical example is given to illustrate that the stability conditions are less conservative than similar tests in the literature. 基于齐次多项式Lyapunov函数这一新工具研究了时变不确定系统鲁棒稳定性问题.针对常见的含参数时变且有界连续可微线性系统的最大稳定区域问题,首先构造常用的参数依赖二次Lyapunov函数,进而给出一个时变系统稳定的充分条件.然后,通过构造适合的参数依赖齐次Lyapunov函数,并利用齐次多项式矩阵表示方法,最终以线性不等式的形式给出系统全局渐近稳定的一个充分条件.数值仿真结果表明齐次Lyapunov函数方法得到的结论对于某些系统比之前类似文献具有更小的保守性.
出处 《Journal of Southeast University(English Edition)》 EI CAS 2014年第3期302-305,共4页 东南大学学报(英文版)
基金 The Major Program of National Natural Science Foundation of China(No.11190015) the National Natural Science Foundation of China(No.61374006)
关键词 linear time-varying systems polytopic uncertainty robust stability linear matrix inequality 线性时变系统 多面体不确定性 鲁棒稳定性 线性不等式
  • 相关文献

参考文献15

  • 1E1 Ghaoui L, Niculescu S I. Advances in linear matrix in- equality methods in control [ M]. Philadelphia: Advances in Design and Control, 2000.
  • 2Lacerda M J, Oliveira R C L F, Peres P L D. Robust H2 and H filter design for uncertain linear systems via LMIs and polynomial matrices [ J]. Signal Processing, 2011, 91(5): 1115-1122.
  • 3Montagner V F, Oliveira R C L F, Peres P L D, et al. Stability analysis and gain scheduled state feedback control for continuous time systems with bounded parameter varia- tions[J]. International Journal of Control, 2009, 82(6) : 1045 - 1059.
  • 4Ambrosino R, Ariola M, Amato F. A convex condition for robust stability analysis via polyhedral Lyapunov func-tions [J]. SIAMJ Control Optim, 2012, 50(1): 490-506.
  • 5BenAbdallah A, Hammami M A, Kallel J. Robust stabil- ity of uncertain piecewise-linear systems: LMI approach [J]. Nonlinear Dyn, 2011, 63(1/2): 183 - 192.
  • 6Chesi G, Garulli A, Tesi A, et al. Homogeneous Lya- punov functions for systems with structured uncertainties [J]. Automatic, 2003, 39(6): 1027-1035.
  • 7Chesi G. Robust stability of time-varying uncertain sys- tems with rational dependence on the uncertainty [ J]. IEEE Transactions on Automatic Control, 2010, 55(10) : 2353 - 2357.
  • 8Brockett R W. Lie algebra and Lie groups in control the- ory [M]. Netherlands: Springer, 1973.
  • 9Prajna S, Papachristodoulou A, Seiler P, et. al. New de- velopments in sum of squares optimization and SOS- TOOLS [ C]//Proceedings of the 2004 American Control Conference. Boston, USA, 2004:5606 -5611.
  • 10Ahmadi A A, Parrilo P A. Converse results on existence of sum of squares Lyapunov functions [C]//IEEE Conference on Decision and Control and European Control Conference (CDC-ECC). Orlando, FL, USA, 2011: 6516-6521.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部