期刊文献+

高分辨锥束CT并行重建算法在基于NVDIA GPU显卡计算平台上的实现 被引量:1

A Practice on Parallel Reconstruction Algorithm of High Resolution Cone Beam Micro-CT Based on NVDIA GPU Graphic Card
下载PDF
导出
摘要 目的:探讨高分辨率锥束显微CT断层重建中引入并行计算的必要性及其加速效果。方法:在具有并行计算功能的GPU显卡(NVIDIA QUADRO K5000显卡,显存4G)中为投影图像和重建体数据分配显存空间,每一个像素分配一个线程进行投影图像的各种校正和滤波,再给每个体素分配一线程进行反投影重建,在显存中实现全部断层重建。程序使用C++面向对象方法实现,内核函数用CUDA实现。结果:重建体数据大小是2 048×2 048×128,每个体素用32位浮点数记录,实验采集1 800张投影,每张投影图像大小为2 048×1 536,重建时间小于9 min,是图像采集时间的1/3,是基于CPU重建耗时的2%。将GPU并行重建得到的图像和CPU单线程重建图像结果进行对比,数据结果一致,满足实验设计的要求。结论:并行计算引入高分辨锥束CT重建可大大提高重建速度,并且能实现采集与重建同步进行。 Objective: To explore the feasibility of parallel computing applying in high-resolution cone beam micro-CT reconstruction and its impact on reconstruction speed. Method: Allocating video memory to projection pictures and reconstruction voxels in GPU graphic card (NVIDIA QUADRO K5 000, Video Memory 4G) with parallel computing, and allocating thread to each pixel for adjusting and filtering projection picture, and then allocating thread to each voxel for Back Projection, thus, all section reconstruction is implemented in graphic card. Result: Less than 9 minutes spent for 2 048 × 2 048 × 128 pixel matrix reconstruction, which is equal to 1/3 of data gathering tirne and 2% of CPU based reconstruction, under the condition that one voxel is recorded by 32 float, and each projection picture size is 2 048 × 1 536, and 1 800 projections are gained in one scanning. Conclusion: Parallel computing applied in cone beam CT reconstruction can greatly increase reconstruction speed and data gathering can simultaneously operate with reconstruction.
出处 《CT理论与应用研究(中英文)》 2014年第5期805-814,共10页 Computerized Tomography Theory and Applications
基金 国家自然科学基金(11005119) 北京世纪坛医院院级课题(2013-C11) 中国计量科学研究院院级课题(25-JB1336-13)
关键词 锥束CT 并行计算 高分辨率 显微CT 重建速度 图像质量 cone beam CT parallel computing high resolution micro-CT reconstruction speed image quality
  • 相关文献

参考文献14

  • 1Landis EN, Keane DT. X-ray microtomography[J]. Materials Characterization, 2010, 61(12): 1305-1316.
  • 2傅健,魏东波,李斌,等.显微CT技术研究进展及在材料科学中的应用[c]//第二届全国背散射电子衍射(EBSD)技术及其应用学术会议暨第六届全国材料科学与图像科技学术会议,包头:2007.
  • 3Arns CH. A comparison of pore size distributions derived by NMR and X-ray-CT techniques[J]. Physica A: Statistical Mechanics and its Applications. 2004, 339(1/2): 159-165.
  • 4Wu D, Peng XF. Saturation evolution induced by inner pore structural effects in a porous material during wetting[J]. International Journal of Heat and Mass Transfer, 2009, 52(19/20) 4664-4668.
  • 5Mizutani R, Suzuki Y. X-ray microtomography in biology[J]. Micron, 2012, 43(2/3): 104-115.
  • 6Clark DP, Badea CT. Micro-CT of rodents: State-of-the-art and future perspectives[J]. Physica Medica, 2014, 30(6): 619-634.
  • 7Scherl H, Kowarschik M, Hofmann HG, et al. Evaluation of state-of-the-art hardware architectures for fast cone-beam CT reconstruction[J]. Parallel Computing, 2012, 38(3): 111-124.
  • 8Noel PB, Walczak AM, Xu JH, et al. GPU-based cone beam computed tomography[J]. Computer Methods and Programs in Biomedicine, 2009, 98(3): 271-277.
  • 9Okitsu Y, Ino F, Hagihara K. High-performance cone beam reconstruction using CUDA compatible GPUs[J]. Parallel Computing, 2010, 36(2/3): 129-141.
  • 10Flores LA, Vidal V, Mayo P, et al. CT Image Reconstruction Based on GPUsEJ]. Procedia Computer Science, 2013, 18: 1412-1420.

共引文献1

同被引文献12

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部