期刊文献+

修正的广义Vakhnenko方程的多重复合型解

Multiple Complexiton Solutions for the Modified Generalized Vakhnenko Equation
下载PDF
导出
摘要 通过扩展实参数到复参数,利用Hirota双线性方法和一组变换,构造了含两个特殊常系数的修正的广义Vakhnenko方程的多重复合型解.用图形展示了复合型解的详细结构,其中有非奇异的复合型解、loop孤立子、cusp孤立子、线孤立子以及它们的相互作用情况. By extending the real parameters into complex parameters,multiple complexiton solutions for two specific coefficients of the modified generalized Vakhnenko equation are constructed with the help of the Hirota's bilinear method and a set of transformations of the independent variables.The detailed structures of complexiton,loop soliton,cusp soliton,line soliton and their interactions are given out graph-ically.
出处 《内蒙古师范大学学报(自然科学汉文版)》 CAS 北大核心 2014年第5期535-539,共5页 Journal of Inner Mongolia Normal University(Natural Science Edition)
基金 国家自然科学基金资助项目(11261037) 内蒙古自然科学基金资助项目(2014MS0111) 内蒙古"草原英才"培育项目(CYYC2011050) 内蒙古自治区高等学校"青年科技英才支持计划青年科技领军人才"项目(NJYT14A04)
关键词 孤复合型解 孤立子解 HIROTA双线性方法 修正的广义Vakhnenko方程 complexiton solution soliton solution Hirota's bilinear method modified generalized Vakhnenko equation
  • 相关文献

参考文献9

  • 1扎其劳.AKNS族的可积耦合系统的达布变换(英文)[J].内蒙古师范大学学报(自然科学汉文版),2012,41(2):109-114. 被引量:2
  • 2Hirota R. The Direct Method in Soliton Theory [M]. Cambridge:Cambridge University Press,2004.
  • 3Wawaz A M. N-soliton aolutions for the Vakhnenko equation and its generalized forms [J]. Phys Scr,2010,82:065006.
  • 4Vakhnenko V O, Parkes E J. Morrison, B/icklund transformation and the inverse scattering transform method for the generalized Vakhnenko equation [J]. Chaos Solitons and Fractals,2003,17:683-692.
  • 5Vakhnenko V O. Solitons in a nonlinear model medium [J]. J Phys A:Math Gen,1992,25:4181-4187.
  • 6Morrison A J, Parkes E J. The N-soliton solution of the modified generalized Vakhnenko equation (a new nonlinear evolution equation) [J]. Chaos Solitons and Fractals, 2003,16 : 13-26.
  • 7EI-Nahhas A. Analytic approximation for the one-loop soliton solution of the Vakhnenko equation [J]. Chaos Solitons and Fractals, 2009,40 : 2257-2264.
  • 8Wu Y,Wang C, Liao S J. Solving the one-loop soliton solution for the vakhnenko equation by means of the homotopy analysis method [J]. Chaos Solitons and Fractals,2005,23:1733-1740.
  • 9Li B,Ma Y,Sun J. The interaction process of the N-soliton solution for an extand generalization of Vakhnenko equation [J]. Appl Math Comput, 2010,216 : 3522-3535.

二级参考文献1

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部