期刊文献+

基于神经网络的规则提取及其渔业应用研究 被引量:2

Extracting rules based on neural network and its application in fisheries forecasting
下载PDF
导出
摘要 为了解决远洋渔业中过度依赖经验而产生的盲目捕捞问题,结合海洋环境数据和历史产量数据对渔场进行有效分析,提出了一种基于径向基函数神经网络(Radial basis function neural network,RBFNN)的栖息地指数(HSI)预测方法,并将其应用于印度洋海域大眼金枪鱼(Thunnus obesus)栖息地指数的预测。在RBFNN训练过程中使用模糊C均值(Fuzzy c-means,FCM)聚类算法,在基于神经网络的规则提取过程中首次采用了和声搜索(Harmony search,HS)算法。实验研究表明,利用FCM改进后的RBFNN,均方误差(Mean square error,MSE)达到0.021 6。和声搜索由于算法简单,易于实现,能够应用于训练后的FCM-RBFNN提取分类规则,提取出的规则能够反映该渔业现状。 In order to solve the issue of blind fishing, which arises from over-reliance on experience in offshore fishing, marine environmental and historical production data have been used to effectively analyze the fishery. This method was proposed to forecast indices of the Indian Ocean big eye tuna's (Thunnus obesus) habitat based on radial basis function neural network (RBFNN). Fuzzy c-means clustering algorithm was utilized during training the neural network. While in the process of rule extraction, a harmony search algorithm was used to extract fishery rules from the trained RBFNN. Finally, the proposed method was used to forecast the fishery habitat indices of the Indian Ocean big eye tuna. Experiments showed that harmony search algorithm can extract classification rules from the trained neural network. The extracted rules reflected the status of the Indian Ocean big eye tuna fishery.
出处 《海洋科学》 CAS CSCD 北大核心 2014年第9期79-84,共6页 Marine Sciences
基金 上海市教委科研创新项目(12ZZ162) 上海市科学技术委员会重点支撑项目(12510502000)
关键词 印度洋大眼金枪鱼(Thunnus obesus) 径向基函数神经网络(Radial basis function neural network RBFNN) 和声搜索(Harmony search HS) 规则提取 渔情预测 the Indian Ocean big eye tuna (Thunnus obesus) radial basis function neural network (RBFNN) harmony search rule extraction fishery forecasting
  • 相关文献

参考文献10

  • 1沈金鳌,方瑞生.浙江近海冬汛带鱼渔获量预报方法的探讨[J].水产科技情报,1982,9(5):1-5. 被引量:2
  • 2Laurent D, Michel P, Stretta J M. Simulation of large scale tropical tuna movements in relation with daily remote sensing data: the artificial life approach [J].Biosystems, 1997, 44(3): 167-180.
  • 3冯波,陈新军,许柳雄.应用栖息地指数对印度洋大眼金枪鱼分布模式的研究[J].水产学报,2007,31(6):805-812. 被引量:38
  • 4Andrews R, Diederich J, Tickle A B. A survey, critique of techniques for extracting rules from trained artificial neural networks[J]. Knowledge-Based Systems, 1995, 8(6): 373-389.
  • 5Hruschka E R, Ebecken N F. Extracting rules from multilayer perceptions in classification problems: A clustering-based approach [J]. Neurocomputing, 2006, 70: 384-397.
  • 6Zbakir L, Baykasog Lu A, Kulluk S. Rule extraction from neural networks via ant colony algorithm for data mining applications [J]. Lecture Notes in Computer Science, 2008, 5313: 177-191.
  • 7Bojarczuk C C, Lopes H S, Freitas A A. A constrained-syntax genetic programming system for discovering classification rules: Application to medical data sets[J]. Artificial Intelligence in Medicine, 2004, 30: 27-48.
  • 8Omran M G H, Mahdavi M. Global-best harmony search[J]. Applied Mathematics and Computation, 2008, 198(2): 643-656.
  • 9Elalfi A E, Hauque R, Elalami M E. Extracting rules from trained neural network using GA for managing E-business[J]. Applied Soft Computing, 2004, 4(1): 65-77.
  • 10陈雪冬,崔雪森.卫星遥感在中东太平洋大眼金枪鱼渔场与环境关系的应用研究[J].遥感信息,2006,28(1):25-28. 被引量:19

二级参考文献19

共引文献54

同被引文献43

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部