期刊文献+

Detection of oil spills in a complex scene of SAR imagery 被引量:4

Detection of oil spills in a complex scene of SAR imagery
原文传递
导出
摘要 We present a method for detecting oil spills in a complex scene of SAR imagery,including segmenting oil spills,and avoiding false alarms.Segmentation is carried out using a multi-time and multi-hierarchical method by dividing the complex sea surface into bright sea and dark sea.Gray-based and edge-based segmentations are done to extract oil spills from bright and dark sea,respectively.The proposed method can extract complete oil spills,obtain better visual results,and increase detection probability more accurately than the traditional method.Based on the surrounding features and the oil spills’features,dark land spots and low contrast dark spots are removed efficiently,thus reducing false alarms.The experimental results demonstrate that the proposed algorithm has fast computation speed,high detection accuracy,and is very useful and effective for detecting oil spills in SAR imagery.
出处 《Science China(Technological Sciences)》 SCIE EI CAS 2014年第11期2204-2209,共6页 中国科学(技术科学英文版)
基金 supported by the National Natural Science Foundation of China(Grant Nos.61171194,61120106004) "111"Project of China(Grant No.B14010)
关键词 SAR image oil spills detection dark spot extraction recognition and classification false alarm rejection SAR图像 检测精度 复杂场景 漏油 视觉效果 低对比度 计算速度 分割
  • 相关文献

参考文献7

二级参考文献62

  • 1郝永强,肖佐,张东和.Responses of the Ionosphere to the Great Sumatra Earthquake and Volcanic Eruption of Pinatubo[J].Chinese Physics Letters,2006,23(7):1955-1957. 被引量:12
  • 2Shapiro J M. Embedded image coding using zerotrees of wavelet coefficients. IEEE Trans Signal Process, 1993, 41: 3445-3462.
  • 3Said A, Pearlman W A. A new, fast, and efficient image codec based on set partitioning in hierarchical trees. IEEE Trans Circ Syst Video Technol, 1996, 6:243-250.
  • 4Cumming V I, Wang J. Polarmetric SAR data compression using wavelet packets in a block coding scheme. In: IEEE International Geoscience and Remote Sensing Symposium, Toronto, 2002. 1126-1128.
  • 5Zhang W C, Wang Y F, Hu G H. Compression of multi-polarimetric SAR intensity images based on 3D-matrix transform. IET Image Process, 2008, 2:194-202.
  • 6Skretting K, Engan K, Husoy J, et al. Sparse representation of images using overlapping frames. In: 12th Scandinavian Conference on Image Analysis, Bergen, 2001. 613-620.
  • 7Bryt O, Elad M. Compression of facial images using the K-SVD algorithm. J Visual Commun Image Represent, 2008, 19:270-282.
  • 8Zepeda J, Guillemot C, Kijak E. Image compression using sparse representations and the iteration-tuned and aligned dictionary. IEEE J Sel Top Signal Process, 2010, (99): 1-1.
  • 9Skretting K, Engan K. Recursive least squares dictionary learning algorithm. IEEE Trans Signal Process, 2010, 58: 2121-2130.
  • 10Skretting K, Engan K. Image compression using learned dictionaries by RLS-DLA and compared with K-SVD. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2011. 1517-1520.

共引文献14

同被引文献15

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部