期刊文献+

基于改进细菌群体趋药性算法的风-蓄-火联合调度 被引量:3

Research on Joint Dispatch of Wind-Storage-Thermal System Based on Improved Bacterial Colony Chemotaxis Algorithm
下载PDF
导出
摘要 具有随机性与波动性的风电直接接入电网后,给电网的调度运行带来很大的风险。针对风电出力的随机性,结合抽水蓄能电站削峰填谷特点,利用风电场景模拟风电出力波动,编制日前发电计划,引入时前调度模型修正各机组出力,建立了含风-蓄-火联合系统的优化调度模型,并利用改进的细菌群体趋药性算法求解该模型。用IEEE-10机组标准算例进行仿真,仿真结果验证了所建调度优化模型的合理性及算法的有效性,模型可供制定含风电和抽水蓄能的电力系统发电调度方案时参考。 Wind power has the characteristics of randomness and volatility. When integrated to the grid, the wind power brings a high risk to the dispatcher. With consideration of the randomness of wind power output and the peak load shifting characteristics of pumped storage power station, a day-ahead generation plan can be made by simulating the wind power fluctuations scene. The hour-ahead scheduling model can be introduced to amend each unit output so as to establish optimal scheduling model of the wind-storage-fire joint system. Meanwhile, the improved bacterial colony chemotaxis algorithm is then introduced to solve the model. Finally, IEEE-10 crew Benchmarks simulation is applied for the analysis. The simulation results demonstrate the effectiveness and rationality of the optimal scheduling models, and can provide a theoretical reference for scheduling the dispatching scheme of the power system containing wind power and pumped storage.
出处 《中国电力》 CSCD 北大核心 2014年第11期95-100,共6页 Electric Power
基金 中央高校基本科研业务费资助项目(CDJXS11151152)~~
关键词 随机性 波动性 风电出力 抽水蓄能 削峰填谷 日前发电计划 时前调度 细菌群体趋药算法 randomness volatility wind power output pumped storage station cut a peak to fill valley day-ahead generation plan hour-ahead dispatch: bacterial colony chemotaxis algorithm
  • 相关文献

参考文献16

二级参考文献189

共引文献480

同被引文献36

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部