期刊文献+

基于ARMA-GARCH的股指期货实证分析 被引量:3

An Empirical Research of Stock Index Futures in China Based on ARMA-GARCH Model
下载PDF
导出
摘要 基于沪深300股票指数期货的时间序列数据,研究了股指期货收益序列的平稳性,建立了ARMA-GARCH模型,通过模型中的均值方程和波动方程,发现初期期货市场上的交易状况偏向于风险厌恶型,得到了收益变化的循环周期大约为3.6天,股指期货市场的波动存在ARCH效应和长记忆性特点。说明市场初期交易者对市场的信息反馈非常敏感和迅速,并且呈现出群体效应和连锁行为,有增大市场风险的可能。 Based on the series data of 300 stock indexes in Shanghai and Shenzhen Stock Market , the stability of the return series was studied;and ARMA-GARCH model for the return series was established .According to the mean equation and vola-tility equation in the model , it was found that the initial futures trading tend to be risk adverse players , and the business cycle of income was about 3.6 days, and the stock index futures market volatility presented ARCH effect and the characteristics of long memory.It showed that the feedback of information of the market is very sensitive and rapid at beginning and the group effect and chain behavior would increase market risks .
出处 《武汉理工大学学报(信息与管理工程版)》 CAS 2014年第5期690-694,共5页 Journal of Wuhan University of Technology:Information & Management Engineering
基金 国家自然科学基金资助项目(61304181) 中央高校基本科研业务费专项资金资助项目(2012-Ia-045 2014-Ia-038)
关键词 沪深300股票指数期货 平稳性 ARMA-GARCH模型 商业环 ARCH效应 stock index futures stability ARMA - GARCH model business cycle ARCH effect
  • 相关文献

参考文献9

  • 1COOK S, MANNING N. Lag optimistation and finite - sample size distortion of unit root tests[J]. Economics Letters,2004 (84) :267 - 274.
  • 2JIAN Y, ZIHUI Y, YINGGANG Z H. Intraday price dis- covery and volatility transmission in stock index and stock index futures markets: evidence from China [ J ]. The Journal of Futures Markets, 2012,32(2) :99 -121.
  • 3ENGLE R. Autoregressive conditional heteroskedastici- ty with estimates of the variance of United Kingdom in-flation [ J ]. Econometrica, 1982 (50) :987 - 1008.
  • 4BOLLERSLEV T. Generalized autoregressive condition- al heteroskedastcity [ J ]. Journal of Econometrics, 1986 (31) :307 - 327.
  • 5SANG H K, CHONGCHEUL C H, SEONG- MIN Y. Intraday volatility spillovers between spot and futures indices: evidence from the Korean stock market [ J ]. Physical A, 2013 (392) : 1795 - 1802.
  • 6ENGLE R, LILIEN D M, ROBBINS R P. Estimating time varying risk premia in the term structure: the ARCH - n model [ J ]. Econometriea, 1987 (55) :391—407.
  • 7Ruey,S.T.金融时间序列分析[M].王辉,潘家柱译,北京:人民邮电出版社,2009.86-113.
  • 8郦金梁,雷曜,李树憬.市场深度、流动性和波动率——沪深300股票指数期货启动对现货市场的影响[J].金融研究,2012(6):124-138. 被引量:75
  • 9左浩苗,刘振涛,曾海为.基于高频数据的股指期货与现货市场波动溢出和信息传导研究[J].金融研究,2012(4):140-154. 被引量:48

二级参考文献67

  • 1施红俊,陈伟忠.股票月收益实际波动率的实证研究[J].同济大学学报(自然科学版),2005,33(2):264-268. 被引量:10
  • 2华仁海.现货价格和期货价格之间的动态关系:基于上海期货交易所的经验研究[J].世界经济,2005,28(8):32-39. 被引量:121
  • 3张金清,刘庆富.中国金属期货市场与现货市场之间的波动性关系研究[J].金融研究,2006(7):102-112. 被引量:66
  • 4郭彦峰,黄登仕,魏宇,2009,《我国指数期货与现货之间的价格发现和波动性外溢》,《管理评论》第8期,第13-22页.
  • 5Andersen, T. G. , T. Bollerslev, F. Diebold and H. Ebens, 2001, "The Distribution of Realized Stock Return Volatili- ty," Journal of Financial Economics , 61, pp. 43 -76.
  • 6Antoniou, A. and I. Garrett, 1993, "To What Extent did Stock Index Futures Contribute to the October 1987 Stock Market Crash?" The Economic Journal, 103, pp. 1444 - 1461.
  • 7Barndorff - Nielsen, O. and N. Shephard, 2004, "Econometric Analysis of Realized Covariation : High Frequency Based'Covariance, Regression, and Correlation in Financial Economics," Econometrica, 72, pp. 885 - 925.
  • 8[ Barndorff - Nielsen, O. and N. Shephard, 2006, "Econometrics of Testing for Jumps in Financial Economics Using Bi- power Variation," Journal of Financial Econometrics, 4, pp. 1 - 30.
  • 9Engle, IL F. and C. W. Granger, 1987, "Cointegration and Error Correction Representation, Estimation and Testing," Econometrica , 55, pp. 251 - 276.
  • 10Eraker, B. , M. Johannes and N. Polson, 2003, "The Impact of Jumps in Volatility and Returns," Journal of Finance, 58, pp. 1269 - 1300.

共引文献115

同被引文献25

  • 1于志军,杨善林.基于误差校正的GARCH股票价格预测模型[J].中国管理科学,2013,21(S1):341-345. 被引量:15
  • 2Bollerslev T. Generalized autoregressive conditional het- eroskedasticity[ J ]. Journal of Econometrics, 1986,31 ( 3 ) : 307 - 327.
  • 3Engle R F. Autoregressive conditional heteroskedasticity with estimates of the variance of the United Kingdom inflation [ J]. Econometrica, 1982,50(4) :987 - 1008.
  • 4Nelson D B. Conditional Heteroskedasticity in Asset Re- turns : A New Approach [ J ]. Econometrica, 1991,59 ( 2 ) : 347 - 370.
  • 5Andersen T G, Bollerslev T, Diebold F X, Ebens H. The dis- tribution of realized stock return volatility [ J ]. Journal of Fi- nancial Economics ,2001,61 ( 1 ) :43 -76.
  • 6Chang C L, McAleer M, Tansuchat R. Analyzing and fore- casting volatility spillovers, asymmetries and hedging in ma- jor oil markets [ J ]. Energy Economics, 2014,32 : 1445 - 1455.
  • 7Hlouskova J,Schmidheiny K,Wagner M. Muhistep predic- tions for multivariate GARCH models: closed form solution and the value for portfolio management [ J ]. Empirical Fi-nance,2009,16:330 -336.
  • 8Feng H,Li S. Active disturbance rejection control based on weighed - moving - average - state - observer [ J ]. J Math Anal Appl,2014(411 ) :354 - 361.
  • 9Agirre - Basurko E, Ibarra - Berastegi G, Madariagac 1. Regression and multilayer perceptron - based models to forecast hourly 03 and NO= levels in the Bilbao area [ J ]. Environmental Modelling & Software, 2006 ( 21 ) : 430 - 446.
  • 10闫树熙,肖庆宪.基于EWMA组合模型的人民币汇率的动态预测[J].统计与决策,2008(16):133-136. 被引量:1

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部