期刊文献+

基于对称约化的偏微分方程相似解研究

Study on similarity solution of partial differential equations based on symmetry reduction
下载PDF
导出
摘要 由于非线性系统的复杂性,对于其求解问题的研究目前还没有通用的方法,为了丰富非线性系统的求解方法,在此通过偏微分方程的决定方程确定点对称无穷小生成元,结合对称约化中的非经典Lie群法得到热方程新的相似解,并基于符号计算系统Maple给出相应的符号计算方法和实现步骤。结果表明,该算法能够有效求解PDEs的相似解,并且不需要显示地求解对应于不变曲面条件的特征方程,同时也适用于其他的发展方程。 Because of the complexity of nonlinear systems,the general method to solve the systems has not been found. In order to enrich the method for solving nonlinear systems,the point symmetry infinitesimal generator was determined by the deci-sion equations of partial differential equations,and the new similarity solution of a heat conduction equation was obtained in combination with the non-classical Lie group approach in the symmetry reduction. The corresponding symbolic computation meth-od and implementation steps are given according to the symbolic computation system Maple. The results demonstrate the method can solve the similarity solutions of PDEs effectively without the need to solve the characteristic equation corresponding to the in-variant curved surface. It can also be applied to other evolution equations.
作者 李晓燕 张成
出处 《现代电子技术》 2014年第22期27-29,共3页 Modern Electronics Technique
基金 陕西省科技厅工业攻关项目(2013K06-39)
关键词 偏微分方程 对称约化 非经典Lie群法 相似解 partial differential equation symmetry reduction non-classical Lie group approach similarity solution
  • 相关文献

参考文献10

  • 1BLUMAN G W, ANCO S C. Symmetry and integration methods for differential equations [M]. New York: Springer-Verlag, 2002.
  • 2BLUMANAND G W, COLE J D. Similarity method for differen- tial equations [M]. New York: Springer-Verlag, 1974.
  • 3OVSIANNIKOV L V. Group analysis of differential equations [M]. New York: Academic Press, 1982.
  • 4CLARKSON P A, KRUSKAL M D. New similarity reductions of the Boussinesq [J]. Journal of Math Phys, 1989, 30(10) : 2201-2213.
  • 5ABLOWITZ M. J, CLARKSON P A. Solitons, nonlinear evolu- tion equations and inverse scattering [M]. UK: Cambridge Uni- versity Press, 1991.
  • 6HIROTA R. Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons [J]. Physical Review Letters, 1971, 27: 1192-1194.
  • 7MIURA M R. Backlund transformation [M]. Berlin: Springer- Verlag, 1987.
  • 8WAZWAZ Abdul-Majid. The tanh method and a variable sepa- rated ODE method for solving double sine-Gordon equation [J]. Physics Letters A, 2006, 350: 367-370.
  • 9OLVER P J. Applications of Lie groups to differential equa- tions [M]. New York: Springer, 1993.
  • 10郭华,郑丽霞,白银.几个非线性偏微分方程的非古典对称及相似解[J].动力学与控制学报,2009,7(4):289-292. 被引量:2

二级参考文献5

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部