期刊文献+

基于极大重叠离散小波变换的金融高频数据波动率估计 被引量:2

Volatility Estimation of Financial High Frequency Data Based on Maximum Overlap Discrete Wavelet Transform
下载PDF
导出
摘要 利用极大重叠离散小波变换方法对资产收益的积分波动率进行估计.针对沪深300指数选取不同小波函数估计积分波动率,计算相对误差统计量.结果表明,不同小波函数对积分波动率估计不存在显著差异,但随着抽样频率的增加,估计精度逐渐提高.对尺度及其相应尺度下的波动率进行对数变换可见,二者之间存在显著的线性关系,随着尺度的增加,波动率逐渐变小. Integrated volatility of asset return was estimated by means of maximum overlap discrete wavelet transform.The different wavelet functions were chosen to estimate the integrated volatility of Shanghai and Shenzhen 300 indices,and relative error statistics was calculated.The results show that integrated volatilities based on different wavelets had no significant difference.The estimated accuracy was improved with the increasing of sampling frequency.There was an obvious linear relationship between logarithmic scale and logarithmic volatility.The volatility decreasd gradually with the scale increasing.
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2014年第6期1222-1226,共5页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:11301036 11226335 11071026)
关键词 高频数据 极大重叠离散小波变换 波动率估计 小波方差 high frequency data maximum overlap discrete wavelet volatility estimation wavelet variance
  • 相关文献

参考文献14

  • 1Ait-Sahaiia Y, Mykland P A, ZHANG Lan. Ultra High Frequency Volatility Estimation with DependentMicrostructure Noise [J]. Journal of Econometrics. 2011,160(1) : 160-175.
  • 2FAN Jianqing,WANG Yazhen. Multi-scale Jump and Volatility Analysis for High-Frequency Financial Data [J].Journal of American Statistical Association, 2007,102(480) : 1349-1362.
  • 3ZHANG Lan, Mykland P A. Ai't-Sahalia Y. A Tale of Two Time Scales: Determining Integrated Volatility withNoisy High-Frequency Data [J]. Journal of the American Statistical Association, 2005,100(472) : 1394-1411.
  • 4Gallant A R,Hsu C T,Tauchen G. Using Daily Range Data to Calibrate Volatility Diffusionvs and Extract theForward Integrated Variance [J]. The Review of Economics and Statistics* 1999,81(4): 617-631.
  • 5Voev V,Lunde A, Integrated Covariance Estimation Using High-Frequency Data in the Presence of Noise [J],Journal of Financial Econometrics. 2007,5(1) : 68-104.
  • 6FAN Jianqing, LI Yingying, YU Ke. Vast Volatility Matrix Estimation Using High-Frequency Data for PortfolioSelection [J]. Journal of the American Statistical Association, 2012, 107(497) : 412-428.
  • 7Merton R C. On Estimating the Expected Return on the Market; An Exploratory Investigation [J]. Journal ofFinancial Economics, 1980,8: 323-361.
  • 8Lunde A,Hoeg E. Wavelet Estimation of Integrated Volatility [J/OL], 2003-08-01. http://econpapers. repec.org/paper/scevScecf3/274. htm.
  • 9Malliavin P, Mancino M E. Fourier Series Method for Measurement of Multivariate Volatilities [J]. Finance andStochastics, 2002,6(1) ; 49-61.
  • 10Subbotin A. A Multi-horizon Scale for Volatility [R]. Documents de Travail du Centre df Economie de laSoronne. Paris: Universite Pantheon-Sorbonne (Paris 1),2008.

同被引文献6

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部