期刊文献+

Hilbert空间中非扩张余弦族的显式、隐式和黏性迭代 被引量:1

Explicit,Implicit and Viscosity Iterations for Nonexpansive Cosine Families in Hilbert Spaces
下载PDF
导出
摘要 研究了Hilbert空间中一些逼近单参数非扩张余弦族公共不动点的迭代格式.借助余弦族理论,在较弱的条件下分别对显式、隐式和黏性的迭代过程建立了一系列的收敛定理.结果表明上述三种迭代过程适用于非扩张余弦族;并且隐式和黏性迭代格式在收敛性上优越于显式迭代格式. In this paper some iterative schemes to approximate a common fixed point of oneparameter nonexpansive cosine family are investigated in Hilbert spaces. By using the theory of cosine families, a series of new convergence theorems are established under some mild conditions for the explicit, implicit and viscosity iteration processes, respectively. Our results show that the above three iterative methods are applicable to the nonexpansive cosine families; and the implicit and viscosity iterations are superior the explicit iteration in convergence.
出处 《数学物理学报(A辑)》 CSCD 北大核心 2014年第6期1518-1531,共14页 Acta Mathematica Scientia
关键词 非扩张余弦族 公共不动点 显式迭代格式 隐式迭代格式 黏性迭代格式 Nonexpansive cosine family Common fixed point Explicit iteration process Implicit iteration process Viscosity iteration process.
  • 相关文献

参考文献19

  • 1Browder F E. Nonexpansive nonlinear operators in Banach space. Proc Nat Acad Sci USA, 1965, 54 1041 1044.
  • 2Mann W R. Mean value methods in iteration. Proc Amer Math Soc, 1953, 4:506-510.
  • 3Ishikawa S. Fixed points by a new iteration method. Proc Amer Math Soc, 1974, 44:147 150.
  • 4Browder F E. Convergence of appropriates to fixed points of nonexpansive nonlinear mappings in Banach spaces. Arch Ration Mech Anal, 1967, 24:82 90.
  • 5Moudafi A. Viscosity approximation methods for fixed point problems. J Math Anal Appl, 2000, 241: 46 55.
  • 6Xu H K, Ori R G. An implicit iteration process for nonexpansive mappings. Numer Funct Anal Optim, 2001, 22:767-773.
  • 7Xu H K. Viscosity approximation methods for nonexpansive mappings. J Math Anal Appl, 2004, 298: 279 291.
  • 8Marino G, Xu H K. Weak and strong convergence theorems for strict pseudo-contractions in Hilbert spaces. J Math Anal Appl, 2007, 329:336 346.
  • 9Cho Y J, Qin X. Convergence of a general iterative method for nonexpansive mappings in Hilbert spaces. J Comput Appl Math, 2009, 228:458 465.
  • 10Ceng L C, A1-Homidan S, Ansari Q H, Yao J C. An iterative scheme for equilibrium problems and fixed point problems of strict pseudo-contraction mappings. J Comput Appl Math, 2009, 223:967 974.

同被引文献6

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部