期刊文献+

面向中文专利的开放式实体关系抽取研究 被引量:3

Research on Chinese-patents-oriented open entity relation extraction
下载PDF
导出
摘要 针对传统实体关系抽取需要预先指定关系类型和制定抽取规则等无法胜任大规模文本的情况,开放式信息抽取(Open Information Extraction,OIE)在以英语为代表的西方语言中取得了重大进展,但对于汉语的研究却显得不足。为此,研究了在组块层次标注基础上应用马尔可夫逻辑网分层次进行中文专利开放式实体关系抽取的方法。实验表明:以组块为出发点降低了对句子理解的难度,外层和内层组块可以统一处理,减少了工程代价;而且在相同特征条件下与支持向量机相比,基于马尔可夫逻辑网的关系抽取效果更理想,外层和内层识别结果的F值分别可达到77.92%和69.20%。 The main goal of information extraction is to transform unstructured or semi-structured texts into structured information, in which entity relation extraction is a major task. In general, traditional methods require pre-specified relation types. But pre-defined rules and manual labels are not adaptive to massive texts. Recently, open information extraction can solve the problems properly. In contrast with the significant achievements concerning English and other Western languages, research on Chinese open relation extraction is quite scarce. The hierarchical Chinese open entity relation extraction approach is proposed that applies Markov Logic Networks (MLN) on the base of both extemal and internal chunk-tags. The experimental results reveal that the origin of chunks can simplify the understanding of sentences, and both layers can be handled consistently so that engineering efforts are reduced. And on the same conditions, MLN can perform better than SVM, in which the F-score of external and intemal layers can reach 77.92% and 69.20% respectively.
出处 《计算机工程与应用》 CSCD 北大核心 2015年第1期125-129,171,共6页 Computer Engineering and Applications
基金 国家"十二五"科技支撑计划项目(No.2012BAH14F00) 国家自然科学基金(No.61073123)
关键词 中文专利依存树库 开放式实体关系抽取 MARKOV逻辑网 Chinese patents dependency treebank open entity relation extraction Markov Logic Networks(MLN)
  • 相关文献

参考文献17

  • 1Poon H,Domingos P.Unsupervised ontological induction from text[C]//Proceedings of the Forty Eighth Annual Meeting of the Association for Computational Linguistics,Uppsala,Sweden,2010:296-305.
  • 2David D.Thematic proto-roles and argument selection[J].Language,1991,67(3):547-619.
  • 3Aone C,Ramos-Santacruz M.REES:a large-scale relation and event extraction system[C]//Proceedings of the 6th Applied Natural Language Processing Conference,2000.
  • 4Hasegawa T,Sekine S,Grishman R.Discovering relations among named entities from large corpora[C]//Proceedings of ACL,2004.
  • 5Etzioni O,Cafarella M,Downey D,et al.Unsupervised namedentity extraction from the web:an experimental study[J].Artificial Intelligence,2005,165(1):91-134.
  • 6Banko M,Cafarella M J,Soderland S,et al.Open information extraction from the web[J].Communications of the ACM,2008,51(12):68-74.
  • 7刘永彬,杨炳儒,李广源,刘英华.基于马尔可夫逻辑网的联合推理开放信息抽取[J].计算机科学,2012,39(9):202-205. 被引量:5
  • 8Etzioni O.Open information extraction:the second generation[C]//Proceedings of International Joint Conference on Artificial Intelligence,2011.
  • 9Schmitz M,Rart R,Soderland S,et al.Open language learning for information extraction[C]//Proceedings o Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning(EMNLP-CONLL),2012.
  • 10Lin T,Etzioni O.Identifying functional relations in Web text[C]//Proceedings of EMNLP,2010.

二级参考文献85

  • 1Ralph Grishman. 1997. Information Extraction : Tech- niques and Challenges[R]. New York: New York U-niversity, 1997.
  • 2Ralph Grishman, Beth Sundheim. Message Under- standing Conference-6: A Brief History[C]//Proceed- ings of COLING, 1996.
  • 3http://www, itl. nist. gov/iad/mig/tests/ace/[OL].
  • 4http ://www. nist. gov/tac/[OL].
  • 5Martina Naughton, N. Kushmerichand J. Carthy. Event Extraction from Hetergeneous News Sources [C]//Proceedings of AAAI, 2006.
  • 6D. McClosky, M. Surdeanu, C. D. Manning. Event Extraction as Dependency Parsing[C]//Proceedings ofACL-HLT, 2011.
  • 7Yu Hong, Jianfeng Zhang, Bin Ma, Jianmin Yao, Gu- odong Zhou, Qiaoming Zhu. Using Cross-Entity Infer ence to Improve Event Extraction[C]//Proeeedings ofACL-HLT, 2011.
  • 8Jun Zhao, Feifan Liu. Product Named Entity Recog nition in Chinese Texts[J]. International Journal of Language Resource and Evaluation. 2008, 42 (2) :132- 152.
  • 9Richard C. Wang, William Cohen. Automatic Set In- stance Extraction using the Web[C]//Proceedings of ACL-IJCNLP, 2009.
  • 10Richard C. Wang, William Cohen. Iterative Set Ex pansion of Named Entities using the Web[C]//Pro- ceedings of ICDM, 2008.

共引文献65

同被引文献31

  • 1Cascini G, Fantechi A, Spinicci E. Natural language processing of patents and technical documentation // Proceedings of the 6th International Workshop on Do- cument Analysis Systems. Florence, 2004:508-520.
  • 2Moehrle M G, Walter L, Geritz A, et al. Patent-based inventor profiles as a basis for human resource decisions in research and development. R&D Mana- gement, 2005, 35(5): 513-524.
  • 3Bergmann I, Butzke D, Walter L, et al. Evaluating the risk of patent infringement by means of semantic patent analysis: the case of DNA chips. R&D Mana- gement, 2008, 38(5): 550-562.
  • 4Altshuller G S. Creativity as an exact science: the theory of the solution of inventive problems. New York: Gordon and Breach Science Publishers, 1984.
  • 5Banko M, Cafarella M J, Soderland S, et al. Open information extraction for the web // The Twentieth International Joint Conference on Artificial Intelli- gence. Hyderabad, 2007, 7:2670-2676.
  • 6Kambhatla N. Combining lexical, syntactic, and semantic features with maximum entropy models for extracting relations // Proceedings of the ACL 2004 on Interactive Poster and Demonstration Sessions. Barcelona, 2004: Article 22.
  • 7Zhao S, Grishman R. Extracting'relations with integ- rated information using kernel methods//Proceedings of the 43rd Annual Meeting on Association for Computationa Linguistics. Ann Arbor, 2005:419-426.
  • 8Etzioni O, Fader A, Christensen J, et al. Open information extraction: the second generation // Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence. Barcelona, 2011, 11:3-10.
  • 9Schmitz M, Bart R, Soderland S, et al. Open language learning for information extraction // Processing of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning. Jeju Island, 2012: 523- 534.
  • 10Hirtton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks. Science, 2006, 313:504-507.

引证文献3

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部