期刊文献+

关于因析设计混杂度量的研究进展

Research Progress on Confounding Measure of Factorial Design
下载PDF
导出
摘要 对因析设计在混杂度量方面的前沿研究进行了回顾,包括二水平正规设计的最大分辨度准则和最小低阶混杂准则,二水平非正规设计的J值,素数幂情形时的最小杂合准则,以及混合水平时的广义最小低阶混杂准则,另外也包括一般最小低阶混杂准则和基于矩阵像的混杂度量准则。 The paper has reviewed frontier research on confounding measure of factorial design including max-imal resolution criterion and minimal low-level confounding criterion of two-level formal design, value J of two-level informal design, minimal heterozygosis criterion in the condition of prime power, and generalized minimal low-level confounding criterion in the condition of mix level; moreover, it also includes general mini-mal low-level confounding criterion and confounding measure criterion based on matrix image.
机构地区 东南大学数学系
出处 《南通职业大学学报》 2014年第4期69-71,84,共4页 Journal of Nantong Vocational University
基金 国家自然科学基金(11171065) 江苏省自然科学基金(BK20141326) 2012年度高等学校博士学科点专项科研基金(博导类)资助课题(20120092110021)
关键词 最小低阶混杂 广义最小低阶混杂 最小矩混杂 最小杂合混杂 广义分辨度 一般最小低阶混杂 矩阵像 minimal low-level confounding generalized minimal low-level confounding minimal matrixconfounding minimal heterozygosis confounding generalized resolution general minimal low-level confound-ing matrix image
  • 相关文献

参考文献2

二级参考文献25

  • 1盛予宁,周纪芗.几个正交表列间的交互作用[J].应用概率统计,1994,10(1):5-9. 被引量:3
  • 2庞善起,陈利艳,闫荣.正交表交互作用列的判定方法[J].河南师范大学学报(自然科学版),2007,35(3):215-215. 被引量:3
  • 3Zhang Y S, Lu Y Q and Pang S Q. Orthogonal arrays obtatined by orthogonal decomposition of projection matrices. Statistica Sinica, 1999, 9: 595-604.
  • 4Cheng,C.S. Orthogonal arrays with variable numbers of symbols[J].The Annals of Statistics,1980,(02):447-453.
  • 5Dey,A,Mukerjee,R. Fractional Factorial Plans[M].New York,A Wiley-Interscience Publication,John Wiley and Sons; Inc,1999.
  • 6Efron,B,Stein,C. The jackknife estimate of variance[J].The Annals of Statistics,1981,(03):586-596.
  • 7Hoeffding,W. A class of statistics with asymptotically normal distribution[J].The Annals of Mathematical Statistics,1948,(03):293-325.
  • 8Kiefer,J.C. Construction and optimality of generalized Youden design[A].{H}Amsterdam:North-Holland,1975.333-353.
  • 9Mukerjee,R. Universal optimality of fractional factorial plans derivable through orthogonal arrays[J].Calcutta Statistical Association Bulletin,1982.63-68.
  • 10Kounias,S. Optimal 2k designs of odd and even resolution[A].{H}Amsterdam:North-Holland,1977.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部