期刊文献+

硅纳米线尖端阵列的制备及其场发射性能研究 被引量:1

Preparation and field emission property of silicon nanotip arrays
下载PDF
导出
摘要 将银镜反应与金属催化化学刻蚀相结合,在室温附近成功地制备出了硅纳米线尖端阵列,其长度为4~7μm,中间部分的直径在100~300nm之间。该方法操作简单、高效、无毒、可控以及低成本,且不需要高温、复杂的设备,对环境也没有特殊要求。性能测试结果显示:该硅纳米材料能够有效实现电子发射,开启电场约为2.7V/μm(电流密度10μA/cm2处);硅纳米尖端阵列的场增强因子约为692,可应用在场发射器件之上。 Laser devices used in the field of optical-electronics are made of GaAs,InP and so on,which are expensive and hard to be integrated into Si-chip.If a laser device can directly made from silicon,the problems can be solved.A novel strategy for preparing large-area,vertically aligned silicon nanotip arrays at near room temperature by combining silver mirror reaction with metal-catalyzed electroless etching(MCEE)has been developed.It has been demonstrated that the silicon nanotips arrays with a length among 4~7μm and a middle part diameter ranging from 100 to 300nm have been successfully fabricated on silicon wafers.This method is considerably simple,efficient,nontoxic,controllable and low-cost.Moreover it does not need high temperature,complicated equipments and demanding conditions of environment.At last,the field emission property of the Si nanotip array is primarily tested.The conclusions are as follows:effective electron emission can be obtained by the Si nanotip array;the turn-on field is 2.7V/μm(the current density is 10μA/cm2).The field enhancement factors determined using the F-N curve is 692,the resultant large-area vertically aligned Si nanotips arrays on Si substrate can be expected to be used on field-emitting applications in the future and it will have broad prospects for development.
出处 《强激光与粒子束》 EI CAS CSCD 北大核心 2015年第1期165-168,共4页 High Power Laser and Particle Beams
基金 国家自然科学基金项目(61405180)
关键词 硅纳米尖端阵列 银镜反应 金属催化化学刻蚀 场发射 silicon nanotip arrays silver mirror reaction metal-catalyzed electroless etching field-emitting
  • 相关文献

参考文献16

  • 1Cui Y, Wei Q Q, Park H K, et al. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species[J]. Science, 2001, 293(5533):1289-1292.
  • 2Cui Y, Lieber C M. Functional nanoscale electronic devices assembled using silicon nanowire building blocks[J]. Science, 20(51,291(5505) 851-853.
  • 3Peng K Q, Jie J S, Zhang W J, et al. Silicon nanowires for rechargeable lithium-ion battery anodes[J]. Appl Phys Lett, 2008, 93 (3) 033105-033108.
  • 4Wu Y, Cui Y, Huynh L, et al. Controlled growth and structures of molecular-scale silicon nanowires[J]. Nano Lett, 2004, 4(3):433-436.
  • 5Zhang R Q, Lifshitz Y, Lee S T. Oxide-assisted growth of semiconducfing nanowires[J]. Adv Mater, 2003, 15(7) :635-640.
  • 6Hanrath T, Korgel B A. Supercritlcal fluid-llquid-solld (SFLS)synthesis of Si and Ge nanowires seeded by colloidal metal nanocrystals[J] Adv Mater, 2003, 15(5) :437-440.
  • 7Zhang Z, Shimizu T, Chen L J, et al. Bottom-imprint method for VSS growth of epitaxial silicon nanowire arrays with an aluminium cata lyst[J]. AdvMater, 2009, 21(46) :4701 -4705.
  • 8Garnett E, Yang P D. Light trapping in silicon nanowire solar cells[J]. Nano Lett, 2010, 10(3):1082-1087.
  • 9Peng K Q, Yan Y J, Gao S P, et al. Synthesis of large-area silicon nanowire arrays via self-assembling nanoelectrochemistry[J]. Adv Ma ter, 2002, 14(16) :1164-1167.
  • 10Peng K Q, Lu A J, Zhang R Q, et al. Motility of metal nanoparticles in silicon and induced anisotropic silicon etching[J]. Adv Funct Ma ter, 2008, 18(19) :3026-3035.

二级参考文献28

  • 1门海宁,程光华,孙传东.飞秒激光作用下的硅表面微结构及发光特性[J].强激光与粒子束,2006,18(7):1081-1084. 被引量:18
  • 2Whaley D R. Gannon B M, Smith C R, et al. Application of field emitter arrays to microwave power amplifier[J]. IEEE Trans on Plasma Sci. 1996, 28(3):727-747.
  • 3Marrese C M. A review of field emission cathode technologies for electric propulsion systems and instruments[C]//Proceeding of IEEE Aer ospace Conference. 2000, 4:85-98.
  • 4Ives R, L. Microfabrication of high-frequency vacuum electron devices[J]. IEEE Trans on Plasma Sci, 2004, 32(3):1277-1291.
  • 5Schwoebel P R, Spindt C A, Holland C E. High current, high current density field emitter array cathodes[J]. J Vac Sci Technol B, 2005, 23(2):591 693.
  • 6Spindt C A, Holland C E, Schwoebel P R. A reliable improved Spindt cathode design for high currents[C]//Proceeding of IEEE International Vacuum Electronics Conference (IVEC). 2010.
  • 7Bernhardt A F, Contolini R J, Jankowski A F, et al. Arrays of field emission cathode structures with sub-300 nm gates[J]. J Vac Sci Technol B, 2000, 18(3):1212-1215.
  • 8Mochizuki Y. Fujii M, Hayashi S, et al. Enhancement of photoluminescence from silicon nanocrystals by metal nanostructures made by nanosphere lithography[J]. J Appl Phys, 2009, 106:013517.
  • 9Cheung C L, NikoliC R J. Reinhardt C E, et al. Fabrication of nanopillars by nanosphere lithography[J]. Nanatechnology, 2006, 17:1339-1343.
  • 10Li K H, Choi H W. Air-spaced GaN nanopillar photonic band gap structures patterned by nanosphere lithography[J]. J Appl Phys , 2011, 109 : 023107.

共引文献9

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部