摘要
对于一类具有1:-4共振奇点的复三次Lotka-Volterra系统,通过前12阶广义奇点量的计算,给出系统可积的充分条件.这些条件通过构造积分因子或形式积分得以证明.
For a class of complex cubic Lotka-Volterra systems with a 1 : -4 resonant singular point, some sufficient conditions for integrability are obtained through the compu- tations of the first twelve generalized singular point values. All these conditions are verified by constructing integrating factors or formal first integrals.
出处
《数学年刊(A辑)》
CSCD
北大核心
2014年第6期729-740,共12页
Chinese Annals of Mathematics
基金
数学天元基金(No.11226041)的资助
关键词
1:-4共振奇点
可积性
积分因子
广义奇点量
形式首次积分
1 : -4 resonant sigular point, Integrability, Integrating factor, Generalized singular point value, Formal first integral