期刊文献+

Identification of multiple inputs single output errors-in-variables system using cumulant 被引量:1

Identification of multiple inputs single output errors-in-variables system using cumulant
下载PDF
导出
摘要 A higher-order cumulant-based weighted least square(HOCWLS) and a higher-order cumulant-based iterative least square(HOCILS) are derived for multiple inputs single output(MISO) errors-in-variables(EIV) systems from noisy input/output data. Whether the noises of the input/output of the system are white or colored, the proposed algorithms can be insensitive to these noises and yield unbiased estimates. To realize adaptive parameter estimates, a higher-order cumulant-based recursive least square(HOCRLS) method is also studied. Convergence analysis of the HOCRLS is conducted by using the stochastic process theory and the stochastic martingale theory. It indicates that the parameter estimation error of HOCRLS consistently converges to zero under a generalized persistent excitation condition. The usefulness of the proposed algorithms is assessed through numerical simulations. A higher-order cumulant-based weighted least square(HOCWLS) and a higher-order cumulant-based iterative least square(HOCILS) are derived for multiple inputs single output(MISO) errors-in-variables(EIV) systems from noisy input/output data. Whether the noises of the input/output of the system are white or colored, the proposed algorithms can be insensitive to these noises and yield unbiased estimates. To realize adaptive parameter estimates, a higher-order cumulant-based recursive least square(HOCRLS) method is also studied. Convergence analysis of the HOCRLS is conducted by using the stochastic process theory and the stochastic martingale theory. It indicates that the parameter estimation error of HOCRLS consistently converges to zero under a generalized persistent excitation condition. The usefulness of the proposed algorithms is assessed through numerical simulations.
出处 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第6期921-933,共13页 系统工程与电子技术(英文版)
基金 supported by the National High Technology Researchand Development Program of China(863 Program)(2012AA121602) the Preliminary Research Program of the General Armament Department of China(51322050202)
关键词 parameter estimation multiple input systems recur-sive identification higher-order cumulant convergence analysis parameter estimation,multiple input systems,recur-sive identification,higher-order cumulant,convergence analysis
  • 相关文献

参考文献27

  • 1T. Soderstrom. Error-in-variables methods in system identification. Automatica, 2007, 43(6): 939-958.
  • 2T. Soderstriim, M. Mossberg. Accuracy analysis of a covariance matching approach for identifying errors-in-variables systems. Automatica, 2011, 47(2): 272-282.
  • 3D. Fan, K. Lo. Recursive identification for dynamic linear systems from noisy input-output measurements. Journal of Applied Mathematics, 2013(10): 1-8.
  • 4Z. Sigrist, E. Grivel, B. Alcoverro. Estimating second-order Volterra system parameters from noisy measurements based on an LMS variant or an errors-in-variables method. Signal Processing, 2012, 92(4): 1010-1020.
  • 5K. Mahata. An improved bias-compensation approach for errors-in-variables model identification. Automatica, 2007, 43(8): 1339-1354.
  • 6V. Cerone, D. Piga, D. Regruto. Set-membership errors-in-variables identification through convex relaxation techniques. IEEE Trans, on Automatic Control, 2012, 57(2): 517 - 522.
  • 7S. Thil, H. Gamier, M. Gilson. Third-order cumulants based methods for continuous-time errors-in-variables model identification. Automatica, 2008, 44(3): 647-658.
  • 8J. Li, F. Ding. Maximum likelihood stochastic gradient estimation for Hammerstein systems with colored noise based on the key term separation technique. Computers and Mathematics with Applications, 2011, 62(11): 4170-4177.
  • 9J. Liang, Z. Ding. Blind MIMO system identification based on cumulant subspace decomposition. IEEE Trans, on Signal Processing, 2003, 51(6): 1457 — 1468.
  • 10S. Thil, W. X. Zheng, M. Gilson. Unifying some higher-order statistic-based methods for errors-in-variables model identification. Automatica, 2009, 45(8): 1937 - 1942.

同被引文献1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部