期刊文献+

利用等差数列构造大围长准循环低密度奇偶校验码 被引量:15

Construction of Quasi-cyclic Low-density Parity-check Codes with a Large Girth Based on Arithmetic Progression
下载PDF
导出
摘要 针对准循环低密度奇偶校验(QC-LDPC)码中准循环基矩阵的移位系数确定问题,该文提出基于等差数列(AP)的确定方法。该方法构造的校验矩阵的围长至少为8,移位系数由简单的数学表达式确定,节省了编解码存储空间。研究结果表明,该方法对码长和码率参数的设计具有较好的灵活性。同时表明在加性高斯白噪声(AWGN)信道和置信传播(BP)译码算法下,该方法构造的码字在码长为1008、误比特率为510-时,信噪比优于渐进边增长(PEG)码近0.3 d B。 To cope with the issue of determining cyclic shift coefficients of the quasi-cyclic sub-matrix in the Quasi-Cyclic Low-Density Parity-Check(QC-LDPC) codes, a method is presented based on the Arithmetic Progression(AP) to compute the cyclic shift coefficients. By this method, the girth of its Tanner graph is at least eight, and the cyclic shift coefficients can be expressed in simple analytic expressions to reduce required memory usage. The simulation results show that the proposed algorithm has high flexibility with respect to the design of code length and rate. Furthermore, over an Additive White Gauss Noise(AWGN) channel and under the Belief Propagation(BP) decoding algorithm, the simulation result also represents that the SNR of the proposed QC-LDPC codes is better than the Progressive Edge-Growth(PEG) codes close to 0.3 d B at the code length of 1008 and BER performance of 10^-5.
出处 《电子与信息学报》 EI CSCD 北大核心 2015年第2期394-398,共5页 Journal of Electronics & Information Technology
基金 国家自然科学基金(60972042 61271250)资助课题
关键词 准循环低密度奇偶校验码 等差数列 围长 准循环基矩阵 Quasi-Cyclic Low-Density Parity-Check(QC-LDPC) codes Arithmetic Progression(AP) Girth Quasi-cyclic sub-matrix
  • 相关文献

参考文献16

  • 1O’Sullivan M E. Algebraic construction of sparse matriceswith large girth[J]. IEEE Transactions on InformationTheory, 2006, 52(2): 718-727.
  • 2Milenkovic O, Kashyap N, and Leyba D. Shortened arraycodes of large girth[J]. IEEE Transactions on InformationTheory, 2006, 52(8): 3707-3722.
  • 3Jiang X and Lee M H. Large girth non-binary LDPC codesbased on finite fields and Euclidean geometries[J]. IEEESignal Processing Letters, 2009, 16(6): 521-524.
  • 4Huang Jen-fa, Huang Chun-ming, and Yang Chao-chin.Construction of one-coincidence sequence quasi-cyclic LDPCcodes of large girth [J]. IEEE Transactions on InformationTheory, 2012, 58(3): 1825-1836.
  • 5Zhang Guohua, Sun Rong, and Wang Xin-mei. Constructionof girth-eight QC-LDPC codes from greatest commondivisor[Jj. IEEE Communications Letters, 2013,17(2):369-372.
  • 6Park H, Hong S, NO J S, et al. Design of multiple-edgeprotographs for QO LDPC codes avoiding short inevitablecycles[J]. IEEE Transactions on Information Theory, 2013,59(7): 4598-4614.
  • 7Mohammad G and Ghaffar R. Column weight two and threeLDPC codes with high rates and large girths[OL].http://arxiv.org/abs/1403.6090, 2014.4.
  • 8Kim S, NO J S, Chung H, et al. On the girth of tanner (3,5)quasi-cyclic LDPC codes[J]. IEEE Transactions onInformation Theory, 2006, 52(4): 1739-1744.
  • 9Zhang Fan, Mao Xue-hong, Zhou Wu-yang, et al. Girth- 10LDPC codes based on 3-D cyclic lattices[J]. IEEETransactions on Vehicular Technology, 2008, 57(2):1049-1060.
  • 10张国华,陈超,杨洋,王新梅.Girth-8(3,L)-规则QC-LDPC码的一种确定性构造方法[J].电子与信息学报,2010,32(5):1152-1156. 被引量:10

二级参考文献35

  • 1范俊,肖扬,李门浩.一种围数为八的低密度校验码校验矩阵设计[J].北京交通大学学报,2007,31(2):10-14. 被引量:2
  • 2Esmaeili M and Gholami M.Maximum-girth slope-based quasi-cyclic (2,k 5) low-density parity-check codes[J].IET Communications,2008,2(10):1251-1262.
  • 3Zhang H and Moura J M F.Geometry based designs of LDPC codes[C].Proceedings of the IEEE International Conference on Communications(ICC'04),Paris,France,2004:762-766.
  • 4Wang Y,Yedidia J S,and Draper S C.Construction of high-girth QC-LDPC codes[C].5th International Symposium on Turbo Codes and Related Topics,Lausanne,Switzerland,2008:180-185.
  • 5Fossorier M P C.Quasi-cyclic low-density parity-check codes from circulant permutation matrices[J].IEEE Transactions on Information Theory,2004,50(8):1788-1793.
  • 6Lu J and Moura J M F.Structured LDPC codes for high-density recording:large girth and low error floor[J].IEEE Transactions on Magnetics,2006,42(2):208-213.
  • 7Vasic B,Pedagani K,and Ivkovic M.High-rate girth-eight low-density parity-check codes on rectangular integer lattices[J].IEEE Transactions on Communications,2004,52(8):1248-1252.
  • 8FOSSORIER M P C.Quasi-cyclic low-density parity-check codesfrom circulant permutation matrices[J].IEEE Trans on InformationTheory,2004,50(8):1788-1793.
  • 9O’SULLIVAN M E.Algebraic construction of sparse matrices withlarge girth[J].IEEE Trans on Information Theory,2006,52(2):718-727.
  • 10KIM S,NO J S,CHUNG H,et al.On the girth of tanner(3,5)quasi-cyclic LDPC codes[J].IEEE Trans on Information Theory,2006,52(4):1739–1744.

共引文献19

同被引文献45

引证文献15

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部