期刊文献+

(2,2)贝叶斯理性秘密共享方案 被引量:5

The(2,2)Bayesian Rational Secret Sharing Scheme
下载PDF
导出
摘要 在理性秘密共享协议中,自利性目标可能会驱使理性参与者偏离协议,从而影响协议的公平性.在(t,n)门限理性秘密共享方案中,其特殊情形(2,2)理性秘密共享方案的公平性较难实现.在同时考虑理性参与者的眼前利益和长远利益的基础上,基于不完全信息动态博弈模型,通过分析理性参与者在(2,2)秘密重构阶段可能采取的策略和信念系统,引入理性参与者的期望收益,研究了(2,2)理性秘密共享重构阶段的完美贝叶斯均衡问题.进一步结合机制设计理论中的VCG(Vickrey-Clarke-Groves)机制,设计激励相容的交互记录机制来约束理性参与者的行为,在不需要秘密分发者保持在线的情形下,提出一个适用于异步通信的公平的(2,2)理性秘密共享方案. The rational secret sharing is an intersection direction between the traditional secret sharing and game theory .In the rational secret sharing scheme,the selfishness maybe impels rational players to deviate from the protocols so as to influence the fairness of scheme .In the existing threshold rational secret sharing schemes,the fairness of (2,2)rational secret sharing scheme, which is a special case,is hard to be realized,especially implementing on the asynchronous communication channel .To achieve fair-ness of (2,2)rational secret sharing over the asynchronous communication channel,this paper firstly analyzes rational players’utili-ty by simultaneously discussing their short-term interest and long-term interest .Then through illustrating rational players’available actions and belief systems,and computing their expected utilities with the dynamic games of incomplete information,the perfect Bayesian equilibrium for reconstruction phase of (2,2)rational secret sharing is studied.Furthermore,combining with the VCG (Vickrey-Clarke-Groves)mechanism of design theory,the incentive compatibility mechanism,which is named recording interaction, is designed to restrict the behavior of rational players.Consequently,the fair (2,2)rational secret sharing scheme is presented, which does not need the dealer to keep on-line over the asynchronous communication channel .
出处 《电子学报》 EI CAS CSCD 北大核心 2014年第12期2481-2488,共8页 Acta Electronica Sinica
基金 国家自然科学基金项目(No.60963023 No.61262073 No.61363068) 贵州省自然科学基金项目(No.20092113 No.20132112) 贵州大学引进人才科研项目(No.2012024) 贵州大学研究生创新基金资助项目(No.2013017 No.2013018)
关键词 理性秘密共享 不完全信息 信念系统 完美贝叶斯均衡 机制设计 rational secret sharing incomplete information belief system perfect Bayesian equilibrium mechanism design
  • 相关文献

参考文献20

  • 1SHAMIR A.How to share asecret[ J]. Communications of the ACM, 1979,22(11) : 612 - 613.
  • 2BLAKLEY GR. Safeguarding cryptographic keys [ A ]. Smith M.Proceedings of the 1979 AFIPS National Computer Confer- ence[C]. New York: AFIPS Press, 1979.313 - 317.
  • 3HALPERN J, TEAGUE V. Rational secret sharing and multi- party computation: extended abslract[ A1. Calinescu G. Proceed- ings of the 36th Annual ACM Symposium on Theory of Com- puting[ C] .New York:ACM Press,2004.623 - 632.
  • 4GORDON S D,KATZ J. Rational secret sharing revisited[ A]. Yung M. LNCS4116:Proceedings of the 5th International Con- ference on Security and Cryptography for Networks [ C ]. Berlin: Springer Press,2006.229 - 241.
  • 5ABRAHAM I, DOLEV D, GONENEN R, et al. Distributed computing meets game theory: robust mechanisms for rational secret sharing and multiparty computation[ A]. Ruppert E. Pro- ceedings of the 25th Annual ACM Symposium on Principles of Distributed Computing[ C]. New York: ACM Press, 2006.53 - 62.
  • 6KATZ J. Bridging game theory and cryptography:recent results and future directions A]. Canetti R. LNCS4948 :Proceedings of the 5th Conference on Theory of Cryptography[ C]. Berlin: Springer Press, 2008.251 - 272.
  • 7MALEKA S, SHAREEF A, RANGAN C. P. Rational secret sharing with repeated games[ A ]. Susilo W. LNCS4991 : Pro- ceedings of the 4th Intemational Conference on Information Se- curity Practice and Experience [ C]. Berlin: Springer Press, 2008.334 - 346.
  • 8ASHAROV G,LINDEIJJ Y. Utility dependence in correct and fair rational secret sharing[ A]. Halevi S. LNCS5677: Proceed- hags of the 29th Annual International Cryptology Conference on Advances in Cryptology [ C]. Berlin: Springer Press, 2009. 559 - 576.
  • 9田有亮,马建峰,彭长根,姬文江.秘密共享体制的博弈论分析[J].电子学报,2011,39(12):2790-2795. 被引量:26
  • 10TIAN Youliang,MA Jianfeng,PENG Changgen,CHEN Xi,JI Wenjiang.One-Time Rational Secret Sharing Scheme Based on Bayesian Game[J].Wuhan University Journal of Natural Sciences,2011,16(5):430-434. 被引量:8

二级参考文献25

  • 1Blakley G R. Safeguarding cryptographic keys[C]//Proc of the National Computer Conference, American Federation of Information Processing Societies Proceedings. Arlington: IEEE Computer Society, 1979: 313- 317.
  • 2Shamir A. How to share a secret [J]. Communications of the ACM, 1979, 22(11): 612-613.
  • 3Halpern J, Teague V. Rational secret sharing and multipartycomputation: Extended abstract [C]// Proc of 36th Annual ACM Symposium on Theory of Computing (STOC). Chicago: ACM Press, 2004: 623-632.
  • 4Katz J. Bridging game theory and cryptography: Recent results and future directions[C]//Proc of Theory of Cryptogra- phy Conference 2008. New York: Springer-Verlag, 2008, 4948: 251-272.
  • 5Lysyanskaya A, Triandopoulos N. Rationality and adversarial behavior in multiparty computation[C]//Proc of CRYPTO 2006. Heidelberg: Springer-Verlag, 2006, 4117: 180-197.
  • 6Kol G, Naor M. Games for exchanging information[C]// Proc of STOC 2008. New York: ACM Press, 2008: 423-432.
  • 7Kol G, Naor M. Cryptography and game theory: Designing protocols for exchanging information[C//Proc of TCC 2008. Heidelberg: Springer-Verlag, 2008, 4948: 320-339.
  • 8Fuchsbauer G, Katz 1, Naccache D. Efficient Rational Secret Sharing in Standard Communication Networks[C]//Proc of TCC 2010. Zurich: Springer, 2010: 419-436.
  • 9Maleka S, Shareef A, Pandu R C. Rational secret sharing with repeated games[C]// Proc of ISPEC 2008. Sydney: Springer-Verlag, 2008: 334-346.
  • 10Ong S J, Parkes D V, Rosen, et al. Fairness with an honest Minority and a rational majority[C]//Proc of TCC 2009. San Francisco: Springer-Verlag, 2009: 36-53.

共引文献29

同被引文献31

引证文献5

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部