期刊文献+

CONVERGENCE ANALYSIS OF THE LOPING OS-EM ITERATIVE VERSION OF THE CIRCULAR RADON TRANSFORM 被引量:2

CONVERGENCE ANALYSIS OF THE LOPING OS-EM ITERATIVE VERSION OF THE CIRCULAR RADON TRANSFORM
下载PDF
导出
摘要 The loping OS-EM iteration is a numerically efficient regularization method for solving ill-posed problems. In this article we investigate the loping OS-EM iterative method in connection with the circular Radon transform. We show that the proposed method converges weakly for the noisy data. Numerical tests are presented for a linear problem related to photoacoustic tomography. The loping OS-EM iteration is a numerically efficient regularization method for solving ill-posed problems. In this article we investigate the loping OS-EM iterative method in connection with the circular Radon transform. We show that the proposed method converges weakly for the noisy data. Numerical tests are presented for a linear problem related to photoacoustic tomography.
作者 郭娟 王金平
机构地区 Faculty of Science
出处 《Acta Mathematica Scientia》 SCIE CSCD 2014年第6期1875-1884,共10页 数学物理学报(B辑英文版)
基金 supported by the National Natural Science Foundation of China(61271398) K.C.Wong Magna Fund in Ningbo University Natural Science Foundation of Ningbo City(2010A610102)
关键词 ill-posed equations regularization loping OS-EM iteration circular Radon transform ill-posed equations regularization loping OS-EM iteration circular Radon transform
  • 相关文献

参考文献3

二级参考文献38

  • 1Kak A C, Slaney M. Principles of computerized tomographic imaging [M]. New York: IEEE Press,1988:75-86.
  • 2Beekman F J, Kamphuis C. Ordered subset reconstruction for x-ray CT [J]. Physics in Medicine and Biology.2001,46(7): 1838-1844.
  • 3Gilland D R, Jaszczak R J, Coleman R E. Transmission CT reconstruction for offset fan beam collimation [J].IEEE Transaction on Nuclear Science. 2000,47(4): 1602-1606.
  • 4Shepp L A, Vardi Y. Maximum Likelihood Reconstruction in Emission Tomography[J]. IEEE Transaction Medical Imaging.1982, MI-1(2):113-122.
  • 5Wallis J W, Miller T R. Rapidly converging iterative reconstruction algorithms in Single-Photon Emission Computed Tomography[J]. Journal of Nuclear Medicine. 1993,34(10): 1793-1800.
  • 6Joseph P M, R A Schulz. View sampling requirements in fan beam computed tomography[J]. Medical Physics,1980,7(6):692-703.
  • 7Hudson H M, Larkin R S. Accelerated image reconstruction using ordered subsets of projection data[J]. IEEE Transaction on Medical Imaging, 1994,13(4):601-609.
  • 8Schmidlin P, Matthias E B, Gunnar B. Subsets and overrelaxation in iterativc image reconstruction[J]. Physicsin Medicine and Biology. 1999,44(5):1384-1396.
  • 9Novikov R G. An explicit inversion formula for the attenuated X-ray transform. Ark Mat, 2002, 40: 145-167.
  • 10Natterer F. Inversion of the attenuated Radon transform. Inverse Problems, 2001, 17:113-119.

共引文献13

同被引文献9

  • 1HANKE M, EUBAUER A, HERZER O. A convergence analysis of the Landweber iteration for nonlinear ill-posed problems[J]. Inverse Problems, 1995, 72:21-37.
  • 2BAKUSHINSKII A B. The problem of the convergence of the iteratively regularized Guass-Newton method[J]. Comput Math Phys, 1992, 32:1353-1359.
  • 3HOFMANN B, KALTENBACHER B, POSCHL C, et al. A convergence rates result for Tikhonov regularization in Banach spaces with non-smooth operators[J]. Inverse Problems, 2007, 23:987-1010.
  • 4SCHOPFER F, LOUIS A K, SCHUSTER T. Nonlinear iterative methods for linear ill-posed problems in Banach spaces[J]. Inverse Problem, 2006, 22:311-329.
  • 5KALTENBACHER B, SCHOPFER F, SCHUSTER T. Iterative methods for nonlinear ill-posed problems in Banach spaces: Convergence and applications to parameter identification problems[EB/OL]. [2009-09-09]. http://dx.doi.org/10.1088/0266-5611/25/6/065003.
  • 6HEIN T, KAZIMIERSKI K. Acclerated Landweber inteation in Banachspaces[EB/OL]. [2010-04-15]. http:// dx.doi.org/10.1088/0266-5611/26/5/055002.
  • 7XU Z B, ROACH G F. Characteristic inequalities of uniformly convex and uniformly smooth Banach spaces[J]. Journal of Mathematical Analysis and Applications, 1991, 157:189-210.
  • 8史婷婷,王金平.RECONSTRUCTION OF THE ATTENUATED RADON TRANSFORM IN π-SCHEME SHORT-SCAN SPECT[J].Acta Mathematica Scientia,2013,33(6):1615-1626. 被引量:3
  • 9沈正洁,王金平.THE IMPROVED RECONSTRUCTION METHOD FOR NONUNIFORM ATTENUATED SPECT DATA[J].Acta Mathematica Scientia,2015,35(3):527-538. 被引量:1

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部