期刊文献+

组态式牵引电动机故障诊断模型 被引量:1

Configurable Fault Diagnosis Model in Induction Motor
下载PDF
导出
摘要 针对电动机典型的故障诊断模型网络结构复杂、训练困难等问题,提出一种组态式牵引电动机故障诊断模型.该模型由多个多输入单输出的子径向基函数神经网络构成,每个子模型识别一种故障特征.根据系统需要将多个子模型任意组合,用来识别类型繁多的电动机故障.利用特征提取后的样本数据对该模型进行训练,并通过测试样本验证了故障诊断模型的有效性.结果表明,采用组态式牵引电动机故障诊断模型,一个子模型仅识别一种牵引电动机故障状态,结构简单,模型训练难度小,提高了模型的故障识别能力以及应用的灵活性,为牵引电动机故障诊断提供了一条新思路. Based on the research on typical fault diagnosis model, a configurable diagnosis model of induc- tion motor was proposed to resolve the problem of complexity of network and difficulty of training. This model contains multiple sub RBF neural networks which have multiple inputs and single output, and one type of fault can be recognized by a specific sub-model. The sub-models can be any combination based on the demands of the system, and various faults can be identified. The model is trained using the samples with feature extracted, and the effectiveness of fault diagnosis model is verified through test samples. It is shown that one sub-model can be used to recognize one specific state of motor in the configured fault diag- nosis model, the structure is simple, the difficulty of model training is reduced, the fault identification ca- pability of model and flexibility of application are improved, providing a new method for the induction mo- tor fault diagnosis.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2015年第3期402-405,共4页 Journal of Shanghai Jiaotong University
基金 国家高技术研究发展计划(863)项目(2012AA040912) 辽宁省教育厅高等学校科研计划项目(L2011077 L2012159)资助
关键词 牵引电动机 故障诊断模型 组态 径向基函数神经网络 构造 induction motor fault diagnosis model configuration radial basis function (RBF) neural network structure
  • 引文网络
  • 相关文献

参考文献3

二级参考文献15

  • 1孙丽玲,李和明,许伯强.基于多回路数学模型的异步电动机内部故障瞬变过程[J].电力系统自动化,2004,28(23):35-40. 被引量:21
  • 2杨宇,于德介,程军圣.基于EMD与神经网络的滚动轴承故障诊断方法[J].振动与冲击,2005,24(1):85-88. 被引量:147
  • 3[1]Grossberg S. Neural Networks and Neural Intelligence[M]. MIT Press, 1988
  • 4[2]Hopfield J J. Artificial Neural Networks[J]. IEEE Circuit and Devices Mag, 1986, (9)
  • 5[3]Rumelhart D, Hinton G, Williams R. Learning Representation by Back-Propagating Errors[J]. Nature, 1986
  • 6[4]Tarun Khanna. Foundation of Neural Networks[ M].Addison - Wesley Publication Company, 1990
  • 7[7]张立明.人工神经网络的模型及其应用[M].复旦大学出版社,1988
  • 8[8]李录平.凝汽器低真空运行的原因及其模糊诊断[M].汽轮机技术,1993
  • 9[9]王道平等.故障智能诊断系统的理论与方法[M].冶金工业出版社,1990
  • 10Ho S L,IEE Electrcal Machines and Drives Conf Publication,1995年,412卷,176页

共引文献50

同被引文献4

引证文献1

二级引证文献3

;
使用帮助 返回顶部