期刊文献+

联合SA-PSO和PDA在传感器配准中的应用

Joint Application of SA-PSO and PDA in Sensor Registration
下载PDF
导出
摘要 对含有系统误差的测量进行配准是准确进行数据关联的前提.实际中,许多不确定性因素导致系统误差,使其演化模型难以建立,从而导致传统配准方法不再适用.为此,提出一种基于优化SA-PSO(simulated annealing particle swarm optimization)的配准算法.由于传感器监视空域经常受到杂波的影响,在利用SA-PSO优化算法对系统误差进行配准时,不仅要考虑外界因素所引发系统误差的不确定性问题,还要考虑目标多个量测的归属问题.基于此,提出一种联合改进退火粒子群优化和概率数据关联的算法SA-PSO-PDA(simulated annealing and particle swarm optimization and probability data association),它综合考虑系统误差的随机性、寻优的最佳化和目标量测的多样性.仿真结果表明了所提算法具有可行性,且能较好地寻优系统误差参数. The registration was the prerequisite to precise association of detection data with system bia- ses. In practice, it was difficult to model the system biases caused by many uncertain factors, thus, the traditional registration methods were not adopted to solve sensor registration. An optimization method based on SA-PSO (simulated annealing particle swarm optimization) was presented. However, the clut- ters could affect surveillance task, and it was necessary to consider the uncertain system biases and multi- ple measurement echo simultaneously. Therefore, a novel registration approach named SA-PSO-PDA (simulated annealing and particle swarm optimization and probability data association) was proposed. This approach considered random system biases, optimal evolution and various measurements. Simulation results showed that the proposed method was feasible, and obtains optimal system biases parameters were better than in other methods.
出处 《郑州大学学报(理学版)》 CAS 北大核心 2015年第1期69-73,共5页 Journal of Zhengzhou University:Natural Science Edition
基金 国家自然科学基金青年科学基金资助项目 编号61300214 61304132 河南省教育厅科学技术研究重点项目 编号14B510024
关键词 系统误差 误差配准 粒子群(PSO) 模拟退火(SA) 概率数据关联(PDA) system biases biases registration particle swarm optimization (PSO) simulated annealing(SA) probability data association (PDA)
  • 相关文献

参考文献18

  • 1Sittler R W.An optimal data association problem in surveillance theory[J].IEEE Trans on Military Electronics,1964,8(2):125-139.
  • 2Morefield C.Application of 0-1 integer programming to multitarget tracking problems[J].IEEE Trans on Automatic Control,1977,22(3):302-317.
  • 3Singer R,Sec R G.A new filter for optimal tracking in dense multitarget environments[C]//Proceedings of the Ninth Allerton Conference Circuit Circuit and System Theory.Urbana-Champaign,1971:201-211.
  • 4Bar-Shalom Y,Kirubarajan T,Lin X.Probabilistic data association techniques for target tracking with applications to sonar,radar and EO sensors[J].IEEE Aerospace and Electronic Systems Magazine,2005,20(8):37-54.
  • 5Berteskas D P.The auction algorithm for assignment and other network flow problems:a tutorial[J].Interfaces,1990,20(4):133-149.
  • 6Dana M P.Registration:A Prerequisite for Multiple Sensor Tracking[M].Norwood,MA:Artech House,1990.
  • 7Zhou Y F,Henry L.An exact maximum likelihood registration algorithm for data fusion[J].IEEE Trans Signal Processing,1997,45(6):1560-1572.
  • 8Mc Michael D W,Okello N N.Maximum likelihood registration of dissimilar sensors[C]//Proceedings of the Australian Data Fusion Symposium.Adelaide,1996:31-34.
  • 9宋强,何友,杨俭.基于UKF的目标状态与系统偏差的联合估计算法[J].弹箭与制导学报,2007,27(3):311-313. 被引量:6
  • 10Lin X D,Bar-shalom Y,Kirubarajan Y T.Exact multisensor dynamic bias estimation with local tracks[J].IEEE Trans on Aerospace and Electronic Systems,2004,40(2):576-588.

二级参考文献21

  • 1李爱国.多粒子群协同优化算法[J].复旦学报(自然科学版),2004,43(5):923-925. 被引量:398
  • 2孟凡辉,王秀坤,赫然,唐一源.一种改进的耗散粒子群算法[J].计算机工程与应用,2005,41(12):34-36. 被引量:2
  • 3许建华,张学工.经典线性算法的非线性核形式[J].控制与决策,2006,21(1):1-6. 被引量:12
  • 4金松河,钱慎一,张素智.基于Web日志的高精度聚类算法[J].河南科技大学学报(自然科学版),2006,27(2):49-51. 被引量:4
  • 5[2]Shi Y,Eberhart R C.Fuzzy Adaptive particle swarm optimization[C]//Proc of the congress on Evolutionary Computation,Seoul Korea,2001
  • 6[3]Eberhart R,Kennedy J.A new optimizer using Particle swarm theory[C]//Sixth International Symposium on Micro Machine and Human Science,Nagoya,Japan,2001
  • 7[6]Zhou Yifeng,Henry L.An exact maximum likelihood registration algorithm for data fusion[J].IEEE Trans Signal Processing,1997,45(6):1560-1572
  • 8Xiao H M,Liu C,Song Z G. Handwritten Recognition Based on Support Vector Machine [ C ]//Proceedings of International Forum of Information Systems Frontiers. 2006 Xian International Symposium. Xian :2006.
  • 9Bar-shalom,Y,Fortmann,T,E.Tracking and data association[M].New York,Academic press,1988.
  • 10J J Burke.The SAGE real time quality control function and its interface with BUIC Ⅱ/BUIC Ⅲ[R].MITRE Corporation Technical Report,No.308,November 1996.

共引文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部