期刊文献+

矩阵对策的两个注记 被引量:6

Two Notes on a Matrix Game
下载PDF
导出
摘要 设 (x*,y*)是以 A=[aij]m× n为赢得矩阵 G的对策解 ,则当局中人 1,2各自独立地使用其最优策略 x* =(x*1,x*2 ,… ,x*m) ,y* =(y*1,y*2 ,… ,y*n )时 ,局中人 1的赢得期望为对策值 v* =x*Ay* T。若局中人双方使用使得方差 D(x*,y*) = mi=1 nj=1(aij- v* ) 2 x*i y*j 达最小的对策解 (x*,y* ) ,则其赢得靠近 v*的概率达到最大。以 O记使方差达到最小的对策解的集合。若 O满足 (x( 1) ,y( 1) ) ,(x( 2 ) ,y( 2 ) )∈ O蕴涵 (x( 1) ,y( 2 ) ) ,(x( 2 ) ,y( 1) )∈ O,则说 O是可换的。本文首先证明了 :若矩阵对策 G有纯解 ,则 O是可换的。然后证明了如果限定局中人 1在其混合扩充策略集的一个非空紧凸子集 X-中选取策略 ,那么存在 X-的一个非空紧子集 O(X-) ,它是有限个非空互不相交紧凸集之并 ,使得只要局中人 1使用 O(X-)中的策略 。 Let (x *,y *) is a game solution to a matrix game G with the payoff matrix A= m×n. When the two players 1 and 2 use independently their optimal strategies x *=(x * 1,x * 2,...,x * m),y *=(y * 1,y * 2,...,y * n), respectively, the player 1's payoff expectation is v *=x *Ay *T. If they use the game solution (x *,y *) whose variance D(x *,y *)=mi=1nj=1(a ij-v *) 2x * iy * j is the smallest, the probability that the payment closes to v * is the greatest. The optimal solution set O is defined as the set of all the game solutions whose variance D(x *,y *) is the smallest. O is said to be commutative if (x (1),y (1)), (x (2),y (2))∈O implies (x (1),y (2)), (x (2),y (1))∈O. In this paper, the author proves, first, that O is commutative if the matrix game has a pure solution. Secondly, it is proved that if the player 1 has to use strategies in X-, a compact convex subset of mixed strategy set, then there exists a non-empty compact subset O(X-) of X-, which is a union of finite number of mutually disjoint compact non-empty convex sets, such that the player 1 can obtain the best wining in the most unfavorable situation if he uses strategies in O(X-).
出处 《运筹与管理》 CSCD 2001年第4期49-54,共6页 Operations Research and Management Science
基金 国家自然科学基金资助项目 ( 78970 0 2 5 ) 淮海工学院自然科学基金资助项目
关键词 矩阵对策 对策解 最优解 可换性 紧凸策略集 最优紧子集 matrix game game solution optimal soluion commutative compact convex strategy set optimal compact subset of strategies
  • 相关文献

参考文献10

二级参考文献10

共引文献18

同被引文献28

  • 1姜殿玉,张盛开.三步矩阵对策上的无中生有计及其实例[J].数学的实践与认识,2006,36(3):225-230. 被引量:1
  • 2姜殿玉 李日华.关于矩阵博弈计策解的一个注记[J].海军航空工程学院学报,2000,15(1):31-32.
  • 3李炳彦.中国传统谋略与西方对策论[N].中国国防报,2002-01-08.
  • 4中山大学.测度与概率基础[M].广州:广东科技出版社,1984..
  • 5Neumann J von, Morgenstern O. Theory of Games and Economic Behavior[M].Princeton:Princeton University Press,1947.
  • 6Jiang dianyu, Zhang shengkai. Tricks on an extended game in normal form[J].Journal of science and technology(Canada),2001,2(3):1-17.
  • 7Jiang dianyu. An-person game in normal form with outside players and k-order judgments[J]. Journal of Science and Technology(Canada),2001 2(3):1-18.
  • 8Jiang D.An-Person game in normal form with outside flayers and k-Order judgments[J].Journal of Science and Technology (Canada),2001,2(3):1-8.
  • 9Jiang D,Zhang S.Tricks on an extended game in normal form[J].Journal of Science and Technology(Canada),2001,2(3):1-17.
  • 10Jiang D.Tricks on a Finite Game[C].In:Gao H.Leon A.Petrosjan,etc.(ed),ICM2002GTA,Qingdao Publishing House,2002.263-27.

引证文献6

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部