期刊文献+

微博网络消息传播的ISSR模型 被引量:1

ISSR Model of Message Propagation in Microblog Networks
下载PDF
导出
摘要 将微博用户划分为无知者、传播者和拒绝者3种类型,结合微博网络消息传播实际情况,在经典传染病易感染-感染-治愈模型基础上,提出新的无知-传播-传播-拒绝模型.详细描述了传播机制,并对模型的均场方程进行稳态分析.由爬取到的上海典型大学新浪微博用户信息,构建符合真实网络统计性质的网络演化模型,并进行网络动力学分析.仿真结果表明,较大的转发率α和较小的拒绝率δ可以提高微博消息的传播范围,多次转发率γ对传播节点密度也有一定的影响. We divide microblog users into three types: uninformed, forwarder and re- jecter, and propose an uninformed-spreader-spreader-rejecter (ISSR) model based on the real situation of message propagation in a microblog network and the classical epidemic model susceptible-infectious-removed (SIR). The transmission mechanism is described in detail. We also give a steady-state analysis of the mean-field equations of the model. The network evolution model corresponding to the statistical property of real networks is built based on the crawled information from Sina microblog users in Shanghai's typical univer- sities. Dynamics of the networks is analyzed. Simulation results show a larger retweeting rate γ and a smaller rejecting rate γ may improve the spreading range of the microblog message. Meanwhile, the multiple retweeting rate γhas a certain influence on the densityof spreaders.
出处 《应用科学学报》 CAS CSCD 北大核心 2015年第2期194-202,共9页 Journal of Applied Sciences
基金 国家自然科学基金(No.61373084) 国家"863"高技术研究发展计划基金(No.2013AA01A603) 上海市教育委员会科研创新项目基金(No.14YZ011)资助
关键词 微博网络 消息传播 ISSR模型 均场方程 网络演化 microblog network, message propagation, ISSR model, mean-field equations,network evolution
  • 相关文献

参考文献13

  • 1Teutle, A.R.M. Twitter: Network properties analysis[C]// Proceedings of the 20th International Conference on Electronics, Communications and Computer,Cholula,Mexico, 2010:1-8.
  • 2Guan W Q, Gao H Y, Yang M M. Analyzing user behavior of the micro-blogging website Sina Weibo during hot social events [J].Physica A: Statistical Mechanics and its Applications, 2014(395): 340-351.
  • 3Achrekar H, Gandhe A, Lazarus R. Predicting Flu Trends using Twitter data[C]// Proceedings of IEEE Conference on Computer Communications Workshops,Shanghai,China, 2011:702-707.
  • 4程洁,张建玮,狄增如.漫谈社会物理学[J].物理,2010,39(2):101-107. 被引量:6
  • 5Abdullah S, Xindong Wu. An Epidemic Model for News Spreading on Twitter[C]//Proceedings of the 23rd IEEE International Conference on Tools with Artificial Intelligence (ICTAI), Boca Raton, FL,USA, 2011:163-169.
  • 6郑蕾,李生红.基于微博网络的信息传播模型[J].通信技术,2012,45(2):39-41. 被引量:33
  • 7Yoichi Enatsu, Yukihiko Nakata, Yoshiaki Muroya. Lyapunov functional techniques for the global stability analysis of a delayed SIRS epidemic model[J]. Nonlinear Analysis: Real World Applications, 2012, 13(5): 2120-2133. Lyapunov functional techniques for the global stability analysis of a delayed SIRS epidemic model.
  • 8Li C H, Tsai C C, Yang S Y. Analysis of epide mic spreading of an SIRS model in complex heterogeneous networks[J]. Communications in Nonlinear Science and Numerical Simulation,2014,19(4):1042-1054.
  • 9Peter J. Witbooi. Stability of an SEIR epidemic model with independent stochastic perturbations [J].Physica A: Statistical Mechanics and its Applications, 2013, 392(20):4928-4936.
  • 10Adisak Denphedtnong, Settapat Chinviriyasit, Wirawan Chinviriyasit. On the dynamics of SEIRS epidemic model with transport-related infection[J]. Mathematical Biosciences, 2013,245(2): 188-205.

二级参考文献33

  • 1Comte A. A General View of Positivism. London:Trubner and Co., 1856.
  • 2Wallerstein I. Open the Social Science. Report of the Gulbenkian Commission on the Restructuring of the Social Sciences. Stanford: Stanford University Press. 1996.
  • 3Pile H S, Thrift N (eds). Patterned Ground: Entanglements of Nature and Culture. London: Reaktion,2004.
  • 4Capra F. The Hictden.Connections: A .Science for Sustainable Living. New York:Random House, 2002.
  • 5Laughlin R B, Pines D. Proc. Nat. Acad. Sci. U. S. A. , 2000, 97 (1) : 28.
  • 6Urry J. Small Worlds and the new "Social Physics".Global Networks, 2004, 4 (2):109.
  • 7Lewin K. J Soc. Issues, 1946, 2 (4) : 34.
  • 8Helbing D, Molnar P. Phys. Rev. E, 1995, 51 (5): 4282.
  • 9Lakoba T I, Kaup D J, Finkelstein N M. Modifications of the Helbing-Molnar-Farkas-Vicsek Social Force Model for Pe destrian Evolution, Simulation, 2005, 81 (5): 339.
  • 10Helbing D, Molnar P. Social force model for pedestrian dynamics. 1995, Arxiv: 9805244.

共引文献37

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部