期刊文献+

多层UV-LIGA电铸镍材料的抗冲击性能 被引量:4

Anti-impact material properties of UV-LIGA multi-layered electroformed nickel
下载PDF
导出
摘要 为研究采用UV-LIGA(Ultraviolet Lithography,Galvanoformung,Abformung)技术制作的多层电铸镍的机械可靠性,对其进行了抗冲击性能分析。利用冲击试验台及信号采集系统测试了UV-LIGA多层电铸镍的抗冲击性能。实验分析得到其累积失效概率-加速度峰值曲线近似拟合于韦布尔统计分布,韦布尔系数γ=7.6,参考加速度为21 300g。当加速度为12 000~18 000g时,可靠性相对较高;当加速度为12 000~18 000 g时,累计失效概率增加较快;当加速度大于24 000g时,可靠性下降迅速。利用扫描电子显微镜(SEM)观察了试样,得到其主要的失效形式有分层、断裂、塑性变形以及黏连等。初步分析了失效原因,并提出了相应的优化设计方法,为UV-LIGA多层结构的设计提供实验依据。 To explore the mechanical reliability of multi-layered electroformed nickel prepared by UVLIGA(Ultraviolet Lithography, Galvanoformung, Abformung) multi-layered manufacturing technology,the anti-impact material properties of the multi-layered electroformed nickel were analyzed.High-speed impact tests for the multi-layered electroformed nickel were completed by adopting an impact testing device and a signal acquisition system.The experimental results show that the cumulative failure probability-peak acceleration curve approximately fits the Weibull statistical distribution,the Weibull coefficient is 7.6and the reference acceleration is 21 300 g.When the acceleration is 12 000-18 000 g,it shows a higher reliability;when that is 12000-18 000 g,the cumulative failure probability increases greatly;however the reliability is declines rapidly at acceleration more than 24000 g.A Scanning Electron Microscopy(SEM)was used to observe the samples and the results show that the delamination,fracture,plastic deformation and adhesion are the main failure modes.Finally,the failure causes were analyzed and corresponding optimization methods were proposed to improve the process of UV-LIGA multi-layered electroformed nickel,which verifiesthat the experiments provide bases for design of a multi layer structure of UV-LIGA.
出处 《光学精密工程》 EI CAS CSCD 北大核心 2015年第4期1044-1052,共9页 Optics and Precision Engineering
基金 国家自然科学基金资助项目(No.51475245)
关键词 UV-LIGA 多层电铸镍 抗冲击性能 微机电系统(MEMS) Ultraviolet Lithography Galvanoformung Abformung (UV-LIGA) multi-layered electroformed nickel anti-impact property Micro-mechanic-electronic System(MEMS)
  • 相关文献

参考文献21

  • 1KELLY J J, GOODS S H, TALIN A A, et al: Electrodeposition of Ni from low-temperature sulfamate electrolytes I. Electrochemistry and film stress[J]. Journal of the Electrochemical Society, 2006, 153(5): 318-324.
  • 2HARTZELLAL,sIL、,AMG,SHEAHR.MEMS可靠性[M].恩云飞等译.北京:电子工业出版社,2012.
  • 3WAGNER U, MULLER-FIEDLER R, BAGDAHN J, et al: Wagner U, Muller-Fiedler R, Bagdahn J, et al. Mechanical reliability of epipoly MEMS structures under shock load[C]. 12th International Conference on Transducer, Solid-State Sensors, Actuators and Microsystems, 2003, 1: 175-178.
  • 4TANNER D M, WALRAVEN J A, HELGESEN K, et al: MEMS reliability in shock environments [C]. 38th Annual IEEE International Reliability Physics Symposium, 2000 : 129-138.
  • 5LIU J K, QI X L, JIA J, et al: Study on the Reliability Problem of MEMS Fuze Mechanism[J]. Advanced Materials Research, 2013, 628: 72-77.
  • 6RAFIEE K, FENG Q, COIT D W. Reliability modeling for dependent competing failure processes with changing degradation rate [ J ]. IIE Transactions, 2014, 46(5): 483-496.
  • 7SRIKAR V T, SENTURIA S D. The reliability of Microelectromechanical systems (MEMS) in shock environments[J]. Journal of Microelectromechan- ical Systems, 2002, 11(3): 206-214.
  • 8IIANG T, ZHOU J, FENG F. Study on designs of stoppers for MEMS devices in shock environment [J]. Applied Mechanics and Materials, 2012, 184: 510-515.
  • 9WU J H, STEYN J L. Reliability studies on MEMS shutters and displays[C]. International Society for Optics and Photonics SPIE MOEMS-MEMS, 2013 : 1-7.
  • 10FANG X W, HUANG Q A, TANG J. Modeling of MEMS reliability in shock environments[C]. 7th International Conference on Solid-State and Integrated Circuits Technology, 2004, 2: 860- 863.

二级参考文献19

  • 1韩光平,刘凯,王秀红.微电子机械系统的尺寸效应[J].西安理工大学学报,2004,20(2):145-148. 被引量:4
  • 2Kelly J J,Goods S H,Talin A A,et al. [J]. Journal of the Electrochemical Society, 2006,153 ( 5 ) : C318-C324.
  • 3Sharpe W N,Bin Yuan,Edwards R L. [J]. Journal of Microelectromechanical Systems,1997,6(3) : 193-198.
  • 4Liu Rui,Wang Hong, Li Xueping, et al. [J]. Journal of Micromechanics and Microengineering, 2008,18 : 960.
  • 5Mazza E, Abel S, Dual J. [J]. Journal of Microsystem Technology, 1996,2 : 197-202.
  • 6Hemker K J, Last H. [J]. Materials Science and Engineer ing A,2001,319-321:882-886.
  • 7Sharpe W N, Lavan D A, Edwards R L. [J]. Digest of Technical Papers, 1997,1 : 607.
  • 8Fritz T, Griepentrog M, Mokwa W. [J]. Electrochimica Acta, 2003,48 : 3029-3035.
  • 9Buchheit T,Christenson T,Schmale D,et al. [J]. MRS Symposium Proceedings, 1998,546 : 121-126.
  • 10KIM S H,KANG S W. [J]. Japanese Journal of Applied Physies,2008,47(9):7314-7316.

共引文献3

同被引文献33

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部