期刊文献+

基于局部纹理差异性算子的高原鼠兔目标跟踪 被引量:5

Object Tracking of Ochotona curzoniae Based on Local Texture Difference Operator
下载PDF
导出
摘要 针对自然生境环境下高原鼠兔目标跟踪中目标与背景颜色相近的问题,提出了一种基于局部纹理差异性算子的高原鼠兔目标跟踪方法。构造了一种新的视觉描述子,称作局部纹理差异性算子LTDC,用来体现目标和背景之间的细微差异性。把该LTDC算子与颜色信息相结合来表征目标模型,并把该目标模型嵌入Meanshift跟踪框架中对高原鼠兔进行跟踪。实验结果表明,所提出的目标表征方法与FLBP目标表征方法相比,具有较强的目标与背景区别能力,在目标和背景颜色相近的场景中,能够较为准确地实现高原鼠兔目标的定位。且所提出的目标表征方法的Meanshift平均迭代次数是FLBP目标表征方法的79.04%,减少了20.96%。跟踪平均总时间是FLBP目标表征方法的82.35%,平均降低了17.65%。同时所提出方法的平均跟踪速度是FLBP目标表征方法的1.22倍。 In order to accurately track Ochotona curzoniae in natural habitat environment, an object tracking method based on Meanshift algorithm was proposed. Considering the object tracking method of kernel Meanshift algorithm based on RGB color histogram usually has the deformation of inaccurate tracking or lose of target in the scenario that the color is similar between the background and the object. In view of the problem that the color between the Ochotona curzoniae and the background is similar in the object tracking process in natural habitat environment, a visual descriptor named as the local texture difference operator (LTDC) was proposed to reflect the subtle differences between the Ochotona curzoniae and background. The LTDC operator was combined with color information to characterize the object model and the object model was embedded into the Meanshift tracking framework for the object tracking of Ochotona curzoniae. The experimental results show that the proposed method for characterizing the object has a strong difference ability of target and background. The object can be accurately positioned in the color similar scenario of the object and the background. Compared with the FLBP algorithm, the average iteration number of proposed method is 79.04% of the average iteration number of the FLBP algorithm, the average tracking total time of proposed method is 82.35% of the average tracking total time of the FLBP algorithm, the average tracking speed of proposed method is 1.22 times of the average tracking speed of the FLBP algorithm
出处 《农业机械学报》 EI CAS CSCD 北大核心 2015年第5期20-25,共6页 Transactions of the Chinese Society for Agricultural Machinery
基金 国家自然科学基金资助项目(61362034 81360229 61265003) 甘肃省自然科学基金资助项目(1310RJY020 1212RJYA033 2014GS02715)
关键词 高原鼠兔 局部纹理差异性算子 均值漂移 目标跟踪 Ochotona curzoniae Local texture difference operator Meanshift Object tracking
  • 相关文献

参考文献14

  • 1Fukunaga Keinosuke, Hostetler Larry D. The estimation of the gradient of a density function, with applications in pattern recognition [ J ]. IEEE Transactions on Information Theory, 1975, 21 ( 1 ) : 32 - 40.
  • 2Ning Jifeng, Zhang Lei, Zhang David, et al. Robust object tracking using joint color - texture histogram [ J]. International Journal of Pattern Recognition and Artificial Intelligence,2009, 23 (7) : 1245 -1263.
  • 3Ning Jifeng, Zhang Lei, Zhang David, et al. Robust mean-shift tracking with corrected background-weighted histogram[J ]- IET Computer Vision, 2012, 6( 1 ) : 62 -69.
  • 4Comaniciu D, Ramesh V, Meer P. Kernel-based object tracking [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25 (5) : 564 - 577.
  • 5徐少平,李春泉,胡凌燕,杨晓辉,江顺亮.一种改进的颜色共生矩阵纹理描述符[J].模式识别与人工智能,2013,26(1):90-98. 被引量:11
  • 6宋克臣,颜云辉,陈文辉,张旭.局部二值模式方法研究与展望[J].自动化学报,2013,39(6):730-744. 被引量:113
  • 7白昀.基于二级LTP纹理颜色直方图的动物实时跟踪[J].西北农业学报,2012,21(8):195-200. 被引量:2
  • 8Tavakoli H R, Moin M S, Heikkila J. Local similarity number and its application to object tracking [ J ]. International Journal of Advance Robotic Systems, 2013,10( 1 ) : 184 - 190.
  • 9Ojala T, PietikJkainen M, M.aenp..a.a T. Multi-resolution gray-scale and rotation invariant texture classification with local binary patterns[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24 (7) : 971 -987.
  • 10Yang Zhao, De Shuang, Wei Jia. Completed local binary count for rotation invariant texture classification [J ]. IEEE Transactions on Image Processing, 2012,21 (10) :4492-4497.

二级参考文献98

  • 1Comanieiu D, Ramesh V, Meer P. Kernel based object tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003,25(2) :564-575.
  • 2Ning J, Zhang L, Zhang D, et al. Robust Obj eet Tracking u- sing Joint Color-Texture Histogram[J]. International Jour- nal of Pattern Recognition and Artificial Intelligence, 2009, 23(7) : 1245-1263.
  • 3Tan X, Triggs B. Fusing Gabor and LBP feature sets for kernel based face recognition under difficult lighting condi tions[J]. Analysis and Modeling of Faces and Gestures. Lecture Notes in Computer Science, 2007,4778 : 168-182.
  • 4Heikkila M,Pietikinen M,Schmid C. Description of interest regions with local binary patterns[J]. Pattern recognition, 2009,42(3) :425-436.
  • 5Tan X,Triggs B. Enhanced Local Texture Feature Sets for Face Recognition Under Difficult Lighting Conditions[J]. IEEE Transactions on Image Processing, 2010, 19 (6): 1635- 1650.
  • 6Yilmaz A,Javed O,Shah M. Object tracking:A survey[J]. Acre Computing Surveys (CSUR), 2006,38(4) : 1 -45.
  • 7Ojala T, Pietikainen M, Harwood D. A comparative study of texture measures with classification based on featured distributions. Pattern Recognition, 1996, 29(1): 51-59.
  • 8Pietik/iinen M, Ojala T, Xu Z. Rotation-invariant texture classification using feature distributions. Pattern Recogni- tion, 2000, 33(1): 43-52.
  • 9Ojala T, Valkealahti K, Oja E, Pietikginen M. Texture dis- crimination with multidimensional distributions of signed gray-level differences. Pattern Recognition, 2001, 34(3): 727-739.
  • 10Ojala T, Pietikainen M, Maenpaa T. Multiresolution gray- scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7): 971-987.

共引文献121

同被引文献42

  • 1胡宾,崔广柏,朱灵芝.BP神经网络预测河流月径流量[J].浙江水利科技,2007,35(2):15-16. 被引量:12
  • 2李培华.一种改进的Mean Shift跟踪算法[J].自动化学报,2007,33(4):347-354. 被引量:53
  • 3马学款,普布次仁,唐叔乙,林志强.人工神经网络在西藏中短期温度预报中的应用[J].高原气象,2007,26(3):491-495. 被引量:35
  • 4李振波. 基于计算机视觉的育肥猪的自动行为分析系统及方法:中国,201410191838.3[P]. 2014-05-08.
  • 5裘正军. 基于机器视觉的猪舍内猪只标记识别方法:中国,CN201310606328.3[P].2013-11-25.
  • 6梁光明,孙即祥,李仲陶,唐玉鹏.基于区域主色特征的目标匹配算法[J].光电工程,2008,35(1):22-25. 被引量:3
  • 7Bin Shao,Hongwei Xin.A real-time computer vision assessment and control of thermal comfort for group-housed pigs[J]. Computers and Electronics in Agriculture . 2007 (1)
  • 8David A. Ross,Jongwoo Lim,Ruei-Sung Lin,Ming-Hsuan Yang.Incremental Learning for Robust Visual Tracking[J]. International Journal of Computer Vision . 2008 (1)
  • 9Peter Ahrendt,Torben Gregersen,Henrik Karstoft.Development of a real-time computer vision system for tracking loose-housed pigs[J]. Computers and Electronics in Agriculture . 2011 (2)
  • 10Zhang K,Zhang L,Yang M H.Real-time compressive tracking. . 2012

引证文献5

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部