期刊文献+

无指导的中文开放式实体关系抽取 被引量:48

Unsupervised Chinese Open Entity Relation Extraction
下载PDF
导出
摘要 传统的实体关系抽取需要预先定义关系类型体系,然而定义一个全面的实体关系类型体系是很困难的.开放式实体关系抽取技术解决了预先定义关系类型体系的问题,但是在中文上的研究还比较少.提出面向大规模网络文本的无指导开放式中文实体关系抽取方法,首先使用实体之间的距离限制和关系指示词的位置限制获取候选关系三元组;然后采用全局排序和类型排序的方法来挖掘关系指示词;最后使用关系指示词和句式规则对关系三元组进行过滤.在获取大量关系三元组的同时,还保证了80%以上的微观平均准确率. Entity relation extraction is an important task in information extraction which helps people find knowledge quickly and accurately in various text. Traditionally, entity relation extraction methods require a pre-defined set of relation types and a corpus with manual tags. But it is difficult to build a well-defined architecture of the relation types and it takes a lot of time to label a corpus. Open entity relation extraction is the task of extracting relation triples from natural language text without pre-defined relation types. There is a lot of research in the field of English open entity relation extraction, but rarely in the field of Chinese open entity relation extraction. This paper presents the UnCORE (unsupervised Chinese open entity relation extraction method for the Web). UnCORE is an unsupervised open entity relation extraction method which discovers relation triples from large-scale Web text. UnCORE exploits using word distance and entity distance constraints to generate candidate relation triples from the raw corpus, and then adopts global ranking and domain ranking methods to discover relation words from the candidate relation triples. Finally UnCORE filters candidate relation triples by using the extracted relation words and some sentence rules. Results show that UnCORE extracts large scale relation triples at precision higher than 80%.
出处 《计算机研究与发展》 EI CSCD 北大核心 2015年第5期1029-1035,共7页 Journal of Computer Research and Development
基金 国家自然科学基金项目(61122012 61273321) 国家"八六三"高技术研究发展计划基金项目(2012AA011102)
关键词 开放式实体关系抽取 无指导 关系三元组 关系指示词 信息抽取 open entity relation extraction unsupervised relation triple relation word information extraction
  • 相关文献

参考文献7

  • 1Chinchor N, Marsh E. MUC-7 information extraction task definition [C] //Proc of MUC-7. Stroudsburg, PA: ACL, 1998: 359-367.
  • 2Banko M, Cafarella M J, Soderland S, et al. Open information extraction from the Web [C] //Proc of IJCAI 2007. San Francisco: Morgan Kaufmann, 2007: 2670-2676.
  • 3Wu F, Weld D S. Open information extraction using Wikipedia [C] //Proc of ACL 2010. Stroudsburg, PA: ACL, 2010:118-127.
  • 4Surdeanu M, Tihshirani J, Nallapati R, et al. Multi-instance multi-label learning for relation extraction [C] //Proc of the EMNLP 2012. Stroudsburg, PA: ACL, 2012: 455-465.
  • 5Fader A, Soderland S, Etzioni O. Identifying relation for open information extraction [C] //Proc of the EMNLP 2011. Stroudsburg, PA: ACL, 2011:1535-1545.
  • 6Yao L, Riedel S, McCallum A. Unsupervised relation discovery with sense disambiguation [C] //Proc of the 50th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA: ACL, 2012: 712-720.
  • 7Che Wanxiang, Li Zhenghua, Liu Ting. LTP~ A Chinese language technology platform [C] //Proc of the Coling 2010. Stroudsburg, PA: ACL, 2010: 13-16.

同被引文献346

引证文献48

二级引证文献472

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部