期刊文献+

低密度奇偶校验码的压缩感知重构 被引量:6

Compressed sensing reconstruction of LDPC code
下载PDF
导出
摘要 针对压缩感知(CS)中由观测噪声引起的信号重建误差问题,提出利用非相关性约束理论作为衡量压缩重建条件的重构误差向量的方法。该方法基于线性分组码中稀疏校验矩阵的零化子特性,建立了以误差向量为目标信号的线性规划问题,实现了低密度奇偶校验(LDPC)码的压缩感知重构。仿真结果表明:在加性高斯白噪声信道和原对偶内点算法下,选取的3种LDPC码均具备较强的信号重构能力,其中Mac Kay随机码的相关性系数较小,因此在信噪比为-1 d B时就可达到100%的误差向量重构成功率。同时表明在满足误比特率要求下,CS-LDPC码可使系统实现低信噪比下的高可靠性通信。 In order to resolve the problem of signal reconstruction error caused by observation noise in Compressed Sensing (CS), a method is proposed to reconstruct error vectors using the theory of non- correlation constraint as the condition. In this method, a linear programming for error vectors is established based on the annihilator property of sparse check matrix; and compressed sensing reconstruction for Low-Density Parity-Check (LDPC) codes is implemented. Under an additive white Gauss noise channel and primal-dual interior point algorithm, simulations show that three selected (LDPC) codes all satisfy non-correlation constraint condition with high reconstruction ability. Moreover, the correlation coefficient of MacKay random codes is smaller, therefore 100% success rate is obtained in reconstructing error vectors with SNR of -1 dB. The simulation results also show that under the condition of satisfying the requirement of Bit Error Rate (BER) performance, high reliability communication can be achieved with low SNR by the proposed CS-LDPC codes.
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2015年第3期985-990,共6页 Journal of Jilin University:Engineering and Technology Edition
基金 国家自然科学基金项目(60972042 61271250)
关键词 通信技术 压缩感知 低密度奇偶校验码 信号重构 互相关系数 零化子矩阵 communicationreconstruction cross-correlationcompressed sensing low-density parity-check codes signalcoefficients annihilator matrix
  • 相关文献

参考文献14

  • 1Baraniuk R G, Cands E, Elad M, et al. Applica- tions of sparse representation and compressive sens- ing[J]. Proceedings of the IEEE, 2010,98 (6):906- 909.
  • 2焦李成,杨淑媛,刘芳,侯彪.压缩感知回顾与展望[J].电子学报,2011,39(7):1651-1662. 被引量:317
  • 3Cands E J. The restricted isometry property and its implications for compressed sensing [J]. Comptes Rendus Math6matique,2008,346(9-10) :589-592.
  • 4Sarvotham S, Baron D, Baraniuk R G. Compressed sensing reconstruction via belief propagation[-R]. Houston: Department of Electrical and Computer Engineering, Rice University, 2006.
  • 5Zhang F,Pfister H D. Compressed sensing and line- ar codes over real numbers[C]//Information Theory and Applications Workshop, La Jolla, 2008: 558- 561.
  • 6Dimakis A G,Vontobel P O. LP decoding meets LP decoding: A connection between channel coding and compressed sensing[C]//47th Annual Allerton Con- ference on Communication, Control, and Compu- ting, Monticello, 2009 : 8-15.
  • 7Dimakis A G,Smarandache R,Vontobel P O. LDPC codes for compressed sensing[-J]. IEEE Transac-tions on Information Theory, 2012, 58 ( 5 ) : 3093- 3114.
  • 8Cand6s E J, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information[J]. IEEE Trans- actions on Information Theory, 2006, 52 (2): 489- 509.
  • 9Candes E J,Tao T. Decoding by linear programming [J]. IEEE Transactions on Information Theory, 2005,51(12) :4203-4215.
  • 10Donoho D L, Elad M, Temlyakov V N. Stable re- covery of sparse overcomplete representations in the presence of noise[J]. IEEE Transactions on Infor- mation Theory, 2006,52 (1): 6-18.

二级参考文献129

  • 1张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 2吴晓丽,葛建华,岳安军.基于多径信道的最佳非规则LDPC码的设计[J].吉林大学学报(信息科学版),2006,24(6):598-604. 被引量:1
  • 3Baraniuk R G, Candes E J, Elad M, et al.. Applications of sparse representation and compressive sensing [J]. Proceedings of the IEEE, 2010, 98(6): 906-909.
  • 4Candes E J, Romberg J, and Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information [J]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509.
  • 5Donoho D L. Compressed sensing [J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
  • 6Potter L C, Ertin E, Parker J T, et al.. Sparsity and compressed sensing in radar imaging [J]. Proceedings of the IEEE, 2010, 98(6): 1006-1020.
  • 7Baraniuk R and Steeghs P. Compressive radar imaging [C] 2007 IEEE International Radar Conference, Boston Massachusetts, USA, April 17-20, 2007: 128-133.
  • 8Herman M A and Strohmer T. High-resolution radar via compressed sensing [J]. IEEE Transactions on Signal Processing, 2009, 57(6): 2275-2284.
  • 9Shi G M, Chert X Y, Qi F, et al.. UWB echo signal detection with ultra-low rate sampling based on compressed sensing [J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2008, 55(4): 379-383.
  • 10Subotic N S, Thelen B, Cooper K, et al.. Distributed radar waveform design based on compressive sensing considerations [C]. 2008 IEEE International Radar Conference, Rome, Italy, May 26-30,2008: 1-6.

共引文献321

同被引文献8

引证文献6

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部