期刊文献+

Local Phase Portraits through the Newton Diagram of a Vector Field

Local Phase Portraits through the Newton Diagram of a Vector Field
原文传递
导出
摘要 The Newton diagram and, in particular, the lowest-degree quasi-homogeneous terms of an analytic planar vector field allow us to determine the existence of characteristic orbits and separatrices of an isolated singular point. We give an easy algorithm for obtaining the local phase portrait near the origin of a bi-dimensional differential system and we provide several examples. The Newton diagram and, in particular, the lowest-degree quasi-homogeneous terms of an analytic planar vector field allow us to determine the existence of characteristic orbits and separatrices of an isolated singular point. We give an easy algorithm for obtaining the local phase portrait near the origin of a bi-dimensional differential system and we provide several examples.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2015年第6期1015-1034,共20页 数学学报(英文版)
基金 Supported by Ministerio de Ciencia y Tecnología,Plan Nacional I+D+I co-financed with FEDER funds,in the frame of the pro jects MTM2010-20907-C02-02 by Consejería de Educación y Ciencia de la Junta de Andalucía(Grant Nos.FQM-276 and P08-FQM-03770)
关键词 MONODROMY separatrices phase portraits quasi-homogeneous vector field Monodromy, separatrices, phase portraits, quasi-homogeneous vector field
  • 相关文献

参考文献12

  • 1Algaba, A., Garcla, C., Reyes, M.: A new algorithm for determining the monodromy of a planar differential system. Appl. Math. Comput., 237, 419-429 (2014).
  • 2Algaba, A., Garcfa, C., Reyes, M.: Characterization of a monodromic singular point of a planar vector field. Nonlinear Anal., 74, 5402-5414 (2011).
  • 3Algaba, A., Garcfa, C., Gamero, E.: The integrability problem for a class of planar systems. Nonlinearity, 22, 395-420 (2009).
  • 4Andreev, A. F.: Investigation of the behaviour of the integral curves of a system of two differential equations in the neighborhood of a singular point. Trans. Amer. Math. Soc., 8, 187-207 (1958).
  • 5Andronov, A. A., Leontovich, E. A., Gordon, I. I., et al.: Qualitative Theory of Second Order Dynamic Systems, Ed. Wiley and Sons, New York, 1973.
  • 6Art,s, J. C., Dumortier, F., Herssens, C., et al.: Computer program P4 to study phase portraits planar ploynomial differential equations, http://mat.uab.es/-artes/p4/p4.htm.
  • 7Bendixson, I.: Sur les courbes d@finies par des equations diff@rentielles. Acta Math., 24, 1-88 (1901).
  • 8Brunella, M., Miari, M.: Topological equivalence of a plane vector field with its principal part defined through Newton polyhedra. J. Differential Equations, 85(2), 338 366 (1990).
  • 9Dumortier, F.: Singularities of vector fields on the plane. J. Differential Equatiorzs, 23, 53 106 (1977).
  • 10Poincard, H.: M4moire sur les courbes ddfinies par les 6quations diffrentielles. J. Math., 37, 375-422 (1881).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部