摘要
The relationships between the basic properties and trace elements in soil argillans and corresponding matrix soils were studied by sampling from the B horizons of 26 Alfisols in croplands of the subtropical area in Central China. The soil elements(K, Na, Ca,Mg, Mn, Co, Cu, Cr, Cd, Li, Mo, Ni, Pb, Ti, V, and Zn) were extracted by acid digestion and their contents were measured using inductively coupled plasma optical emission spectrometry(ICP-OES). The mean contents of clay and organic matter in the argillans were approximately 1.1 and 1.3 times greater than those in the matrix soils, respectively. The p H values and the contents of P2O5 and bases(K2O, Na2 O, Ca O, and Mg O) in the argillans were higher than those in the corresponding matrix soils. Cu, Cd, Ti, and V were enriched in the argillans. Correlation coefficients and factor analyses showed that Co, Cu, Li, and Zn were bound with phyllosilicates and manganese oxides(Mn-oxides) in the argillans. Cr and Pb were mainly associated with iron oxides(Fe-oxides), while Ni was bound with Mn-oxides. Cd, Ti, and V were chiefly associated with phyllosilicates, but Cr and Mo were rarely enriched in the argillans.In contrast, in the matrix soils, Co and Zn were associated with organic matter and Fe-oxides, Cr existed in phyllosilicates, and Mo was bound to Fe-oxides. Cd, Ti, and V were associated with organic matter. The results of this study suggest that clays, organic matter, and minerals in the argillans dominate the illuviation of trace elements in Alfisols. Argillans might be the active interfaces of elemental exchange and nutrient supply in cropland soils in Central China.
The relationships between the basic properties and trace elements in soil argillans and corresponding matrix soils were studied by sampling from the B horizons of 26 Alfisols in croplands of the subtropical area in Central China. The soil elements (K, Na, Ca, Mg, Mn, Co, Cu, Cr, Cd, Li, Mo, Ni, Pb, Ti, V, and Zn) were extracted by acid digestion and their contents were measured using inductively coupled plasma optical emission spectrometry (ICP-OES). The mean contents of clay and organic matter in the argillans were approximately 1.1 and 1.3 times greater than those in the matrix soils, respectively. The pH values and the contents of P2O5 and bases (K2O, Na2O, CaO, and MgO) in the argillans were higher than those in the corresponding matrix soils. Cu, Cd, Ti, and V were enriched in the argillans. Correlation coefficients and factor analyses showed that Co, Cu, Li, and Zn were bound with phyllosilicates and manganese oxides (Mn-oxides) in the argillans. Cr and Pb were mainly associated with iron oxides (Fe-oxides), while Ni was bound with Mn-oxides. Cd, Ti, and V were chiefly associated with phyllosilicates, but Cr and Mo were rarely enriched in the argillans. In contrast, in the matrix soils, Co and Zn were associated with organic matter and Fe-oxides, Cr existed in phyllosilicates, and Mo was bound to Fe-oxides. Cd, Ti, and V were associated with organic matter. The results of this study suggest that clays, organic matter, and minerals in the argillans dominate the illuviation of trace elements in Alfisols. Argillans might be the active interfaces of elemental exchange and nutrient supply in cropland soils in Central China.
基金
financially supported by the National Natural Science Foundation of China (Nos. 40971143 and 40830527)