期刊文献+

双侧特征融合的乳腺肿块检测 被引量:6

Breast Tumor Detection on Fusion of Bilateral Feature
下载PDF
导出
摘要 乳腺癌是妇女最常见的恶性肿瘤之一,面向乳腺钼靶X线图像的计算机辅助肿块检测技术可以帮助影像科医师早期发现乳腺病变.针对于单侧的乳腺肿块检测中准确率有待提升的问题,提出双侧特征融合的乳腺肿块检测算法.首先,进行图像预处理,并利用相干点漂移完成乳腺轮廓配准;然后,利用配准得到的变换矩阵获得双侧乳腺感兴趣区域,再在其中提取左右侧乳腺的单侧特征向量和双侧对比特征向量,从而建立融合的特征模型,并采用遗传选择算法对特征向量进行特征选择;最后利用极限学习机基于选择后的特征进行乳腺肿块检测.实验结果表明,与传统的基于单侧的乳腺肿块检测算法相比,文中算法能有效地提高检测准确率. Breast cancer is one of the most common malignant tumors of women, computer-aided breast tumor detection technology faced on mammogram can help radiologists to detect breast lesions early. Breast tumor detection (BTD) algorithm on fusion of bilateral feature is presented, which aims at the problem that the accuracy of BTD on unilateral feature can be improved. First, preprocess the image and registration the breast contour using the coherent point drift. Then, use transformation matrix obtained from registration to acquire regions of interest (ROIs) of bilateral breast. After that, extract unilateral feature vector of left and right breast and bilateral contrast feature vector in ROIs. Thereby, the fusion feature model is set up, and then the features are selected by genetic algorithm selection. Finally, breast tumor is detected by extreme learning machine based on the selected features. Experimental results show that the proposed BTD algorithm on fusion of bilateral features can improve the accuracy of the detection effectively, compared to the traditional BTD algorithm on unilateral feature.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2015年第6期1024-1031,共8页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(61402089 61472069 61100022) 中央高校基本科研业务费专项资金(N141904001)
关键词 双侧特征融合 乳腺肿块检测 极限学习机 钼靶X线图像 fusion of bilateral feature breast tumor detection extreme learning machine mammogram
  • 相关文献

参考文献17

  • 1Pisano E D, Gatsonis C, Hendrick E, et al. Diagnostic per?formance of digital versus film mammography for breast-can?cer screening[J]. The New EnglandJournal of Medicine, 2005, 353(17): 1773-1783.
  • 2Eltonsy N H, Tourassi G D, Elmaghraby A S. A concentric morphology model for the detection of masses in mammogra?phy[J]. IEEE Transactions on Medical Imaging, 2007, 26(6): 880-889.
  • 3Wang Z Q, Yu G, Kang Y, et al. Breast tumor detection in dig?ital mammography based on extreme learning machine[J]. Neurocomputing, 2014,128(3): 175-184.
  • 4Yin F F, Giger M L, Doi K, et al. Computerized detection of masses in digital mammograms: analysis of bilateral subtrac- tion images[J]. Medical Physics, 1991, 18(5): 955-963.
  • 5Sallam M Y, Bowyer K W. Registration and difference analysis of corresponding mammogram images[J]. Medical Image Analysis, 1999,3(2): 103-118.
  • 6徐胜舟,宋恩民,许向阳.基于改进Demons算法的乳腺X线摄片非刚性配准[J].中国图象图形学报,2009,14(12):2566-2571. 被引量:5
  • 7Bernholt T, Fried R, Gather U, et al. Modified repeated median filters[J]. Statistics and Computing, 2006,16(2): 177-192.
  • 8Wang Y, Chen Q, Zhang B M. Image enhancement based on equal area dualistic sub-image histogram equalization method[J]. IEEE Transactions on Consumer Electronics, 1999,45(1): 68-75.
  • 9ZhuJ L, Zhao Y N. Vehicle license image segmentation using wavelet transforms[C]//Proceedings of International Sympo?sium on Intelligent Multimedia Video and Speech. Los Alami?tos: IEEE Computer Society Press, 2001: 267-270.
  • 10Hsung T C, Lun D P, Siu W C. A deblocking technique for block-transform compressed image using wavelet transform modulus maxima[J]. IEEE Transactions on Image Processing, 1998,7(10): 1488-1496.

二级参考文献26

共引文献55

同被引文献26

引证文献6

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部