期刊文献+

铜-钼源漏电极对非晶氧化铟镓锌薄膜晶体管性能的改善 被引量:3

Improved performance of the amorphous indium-gallium-zinc oxide thin film transistor with Cu-Mo source/drain electrode
原文传递
导出
摘要 在铜(Cu)和非晶铟镓锌氧化物(a-IGZO)之间插入30 nm厚的钼(Mo)接触层,制备了具有Cu-Mo源漏电极的a-IGZO薄膜晶体管(TFT).Mo接触层不仅能够抑制Cu与a-IGZO有源层之间的扩散,而且提高了Cu电极与玻璃基底以及栅极绝缘层的结合强度.制备的Cu-Mo结构TFT与纯Cu结构TFT相比,具有较高的迁移率(~9.26 cm2·V-1·s-1)、更短的电流传输长度(~0.2μm)、更低的接触电阻(~1072Ω)和有效接触电阻率(~1×10-4Ω·cm2),能够满足TFT阵列高导互联的要求. Copper is an alternative material for aluminum electrode to meet the stringent requirement for high mobility and low resistance-capacitance (RC) delay of amorphous indium-gallium-zinc oxide (a-IGZO) thin film transistor (TFT) for next generation of display technology due to its intrinsic high conductivity. However, low bonding strength between copper layer and insulator/glass and easy diffusion into active layer restrict its application in the field of TFT. In this work, a 30 nm thin film of molybdenum is introduced into copper electrode to form a copper-molybdenum source/drain electrode of a-IGZO TFT, which not only inhibits the diffusion of copper, but also enhances the interracial adhesion between electrode and substrate. The obtained Cu-Mo TFT possesses a high mobility of ~9.26 cm^2·V^-1·s^-1 and a low subthreshold swing of 0.11 V/Decade. Moreover, it has shorter current transfer length (-0.2μm), lower contact resistance (-1072Ω), and effective contact resistance (~1×10^-4Ω·cm^2) than the pure copper electrode. Cu-Mo electrode with low contact resistance and high adhesion to substrates paves the way to the application of copper in high conductivity interconnection of a-IGZO TFT.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2015年第12期65-71,共7页 Acta Physica Sinica
基金 广东省引进创新科研团队计划(批准号:201101C0105067115) 中国科学院红外物理国家重点实验室开放课题(批准号:M201406) 国家自然科学基金(批准号:61036007,51173049,61306099,61401156,61204089) 中央高校基本科研业务费专项资金(批准号:2014ZZ0028) 广州市科技计划(批准号:2013Y2-00114)资助的课题~~
关键词 高导互联 非晶氧化铟镓锌 薄膜晶体管 铜-钼源漏电极 high conductivity interconnection, amorphous indium-gallium-zinc oxide, thin film transis-tor, Cu-Mo source/drain electrode
  • 引文网络
  • 相关文献

参考文献23

  • 1Liao Y, Shao X, Du Y, Song Y, Hu W, Zhang Z, Chen Y, Wang Y, Ma Q, Yoon D, Wang D, Yuan J, Wu H, Guo Z, Hao Z, Zhang J, Lü J 2014 J. Inf. Display 15 77.
  • 2Arai T, Sasaoka T 2011 SID Symposium Digest of Technical Papers 42 710.
  • 3Yun P S, Koike J 2011 J. Electrochem. Soc. 158 H1034.
  • 4李帅帅, 梁朝旭, 王雪霞, 李延辉, 宋淑梅, 辛艳青, 杨田林 2013 物理学报 62 077302.
  • 5李喜峰,信恩龙,石继锋,陈龙龙,李春亚,张建华.低温透明非晶IGZO薄膜晶体管的光照稳定性[J].物理学报,2013,62(10):440-444. 被引量:9
  • 6Yu Z, Ren R, Xue J, Yao Q, Li Z, Hui G, Xue W 2015 Appl. Surf. Sci. 328 374.
  • 7Lee Y W, Kim S, Lee S, Lee W, Yoon K, Park J, Kwon J, Han M 2012 Electrochem. Solid-State Lett. 15 H126.
  • 8Gong N, Park C, Lee J, Jeong I, Han H, Hwang J, Park J, Park K, Jeong H, Ha Y, Hwang Y 2012 SID Symposium Digest of Technical Papers 43 784.
  • 9Zhao M, Xu M, Ning H, Xu R, Zou J, Tao H, Wang L, Peng J 2015 IEEE Electron Device Lett. 36 342.
  • 10Tai Y, Chiu H, Chou L 2012 J. Electrochem. Soc. 159 J200.

二级参考文献26

  • 1Nomura K, Ohta H, Takagi A, Kamiya T, Hirano M, Hosono H 2004 Nature 432 488.
  • 2Jeon S J, Chang J W, Choi K S, Kar J P, Lee T, Myoung J M 2010 Mat. Sci. Semicond. Proc. 13 320.
  • 3吴惠桢, 张莹莹, 王雄, 朱夏明, 原子健, 徐天宁 2010 物理学报 59 5018.
  • 4Libsch F R, Kanicki J 1993 Appl. Phys. Lett. 62 1286.
  • 5Estrada M, Cerdeira A, Iniguez B 2012 Microelectron. Reliab. 52 1342.
  • 6Kim G H, Jeong W H, Kim H J 2010 Phys. Status Solidi A 207 1677.
  • 7Lee J, Park J S, Pyo Y S, Lee D B, Kim E H 2009 Appl. Phys. Lett. 95 123502.
  • 8Takechi K, Nakata M, Eguchi T, Yamaguchi H, Kaneko S 2009 Jpn. J. Appl. Phys. 48 011301.
  • 9Kim M G, Kanatzidis M, Facchetti A, Marks T 2011 Nature Mater. 10 382.
  • 10Kimura H U.S. Patent 0 283 762 [2009-11-19].

共引文献8

同被引文献9

引证文献3

二级引证文献7

;
使用帮助 返回顶部