期刊文献+

决策树算法在Weka平台上的数据挖掘应用 被引量:10

Data Mining Application in Weka Platform Based on Decision Tree Classification
下载PDF
导出
摘要 决策树算法可以对数据集进行有效的训练学习和快速准确的分类,其中ID3算法是最早提出的一种决策树算法,但是,此算法只适用于处理取值较多属性的数据,不能处理连续数据,对噪声也比较敏感。C4.5算法是对ID3算法的优化,不仅可以对连续值属性进行处理,而且增加了对空值数据的处理功能。在研究和分析主流决策树算法基础上,针对二手汽车数据库在Weka数据挖掘平台进行了C4.5算法的设计与实现。实验结果表明该算法对预测数据集中的相应属性能进行较为准确的预测。 Decision tree algorithm can do effective training and learning as well as fast accurate classification to dataset. ID3 algorithm is the earliest decision tree algorithm. But this algorithm can only be applied to handle more attribute data values, and continuous data can't be solved efficiently. It is also sensitive to noise. C4.5 algorithm is the optimization of ID3 algorithm. It can not only solve the continuous attribute values, but also increase the function of empty data. This paper mainly uses Weka data mining tools to do the design and realization of C4.5 algorithm, which is based on an example of Second-hand car database.This experiment indicates that those concentrated values can be predicted accurately by this algorithm.
出处 《微型电脑应用》 2015年第6期63-65,共3页 Microcomputer Applications
关键词 决策树算法 ID3 C4.5 WEKA Decision Tree Algorithm ID3 C4.5 Weka
  • 相关文献

参考文献9

二级参考文献29

  • 1Han Jiawei,Micheline.数据挖掘概念与技术.北京:机械工业出版社,2006:1-100.
  • 2王仲谋,数据仓库—客户/服务器计算指南,1997年
  • 3HanJiawei KamberM.Data Mining Concepts and Techniques[M].北京:机械工业出版社,2001..
  • 4Mitchell T M.机器学习[M].北京:机械工业出版社,2004.
  • 5Quinlan J R.Induction of Decision Tree[J].Machine Learning,1986(1):81-106.
  • 6Quinlan J R.C4.5:Programs for Machine Learning[M].[s.l.]:Morgan Kaufman,1993.
  • 7Mehta M,Agrawal R,Rissanen J.SLIQ:A Fast and Scalable Classifier for Data Mining[M].US:IBM Almaden Research Center,1996.
  • 8Shafer J C,Agrawal R,Mehta M.SPRINT:A Scalable Parallel Classifier for Data Mining[C]//Proc of the 22nd Int Conf on Very Large Databases.Mumbai(Bombay),India:[s.n.],1996.
  • 9Rastogi R,Shim K.PUBLIC:A Decision Tree Classifier that Integrates Building and Pruning[R].Murray Hill:Bell Laboratories,1998.
  • 10Breiman L,Friedman J h,Olshen R A,et al.Classification and regression trees[M].California:Wadsworth Publishing Company,1984.

共引文献320

同被引文献67

  • 1丁晓群,李子韵,黄伟,廖亨利.基于免疫算法的配电网电容器优化配置[J].浙江电力,2003,22(4):1-4. 被引量:1
  • 2王继魁,吕凯,李虹.基于决策树分类的Weka平台上数据挖掘应用[J].白城师范学院学报,2013,27(5):37-40. 被引量:4
  • 3Hong Feng, Guo Runhua, Zhou Fujie. Impact of recy- cled asphalt pavement material variability on pavement performance[J]. Road Materials and Pavement Design, 2014,15(4) ..841--855.
  • 4An DeokSoon, Nam JeongHee, Kwon SooAhn, et al. Threshold Values of Performance Indicators for As- phalt Concrete Pavement to Apply to Pavement Per- formance Warranty[J]. Journal of Testing and Evalua- tion,2014,42(5) :1203--1212.
  • 5Bahnsen Alejandro Correa, Aouada Djamila, Ottersten Bjoern. Example-- dependent cost-- sensitive decision trees[J]. Expert Systems with Application, 2015, 42 (19) : 6609--6619.
  • 6Barros Rodrigo C, Basgalupp Marcio P, Freitas Alex A, et al. Evolutionary Design of Decision--Tree Algo- rithms Tailored to Microarray Gene Expression Data Sets[J]. IEEE Transactions on Evolutionary Compu- tation,2014,18(6) : 873--892.
  • 7Saghebian S Mehdi, Sattari M Taghi, Mirabbasi Ra- soul,et al. Ground water quality classification by deci- sion tree method in Ardebil region, Iran[J]. Arabian Journal of Geosciences,2014,7(11): 4767--4777.
  • 8Xiao Xiang, Xu Honglei, Xu Shouzhi. Using IBM $PSS modeler to improve undergraduate mathematical modelling competence[J]. Computer Application in Engineering Education, 2015,23 (4) : 603 -- 609.
  • 9宋俊敏,李明,范虎彪,余敬敬.基于BP神经网络的路面使用性能评价方法研究[J].公路,2008,53(12):140-144. 被引量:13
  • 10手足口病诊疗指南(2010年版)[J].国际呼吸杂志,2010,30(24):1473-1475. 被引量:1077

引证文献10

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部