摘要
To study the configuration and conductivity effects on micro-scale methane-air flames by electric field and iron wind,different electric field forces and iron winds are generated by needle,circle and plate electrodes respectively in different electrodes heights under both AC and DC fields though experiments. Experimental results showed that the flame characteristics are affected by needle electrodes mainly through the action of ion wind,by plate type electrodes mainly through the action of electric field force and by annular electrodes through both the electric field force and ion wind at the same time. Under DC field 's effects of all electrodes types,the flame will consequently go down while the voltage reached to a limit value,and it will breakdown under the strong effect of the ion wind by needle electrodes. The results also showed the influence by different electrodes types to the current characteristics,resistance properties and configuration of themicro-scale flames.
To study the configuration and conductivity effects on micro-scale methane-air flames by electric field and iron wind, different electric field forces and iron winds are generated by needle, circle and plate electrodes respectively in different electrodes heights under both AC and DC fields though experiments. Experimental results showed that the flame characteristics are affected by needle electrodes mainly through the action of ion wind, by plate type electrodes mainly through the action of electric field force and by annular electrodes through both the electric field force and ion wind at the same time. Under DC field' s effects of all electrodes types, the flame will consequently go down while the voltage reached to a limit value, and it will breakdown under the strong effect of the ion wind by needle electrodes. The results also showed the influence by different electrodes types to the current characteristics, resistance properties and configuration of themicro-scale flames.
基金
Sponsored by National Natural Science Foundation of China(Grant No.51376021)