期刊文献+

基于GSO-BFA算法的PMSM自适应模糊滑模控制 被引量:5

Research on Speed Sensorless PMSM With Adaptive Fuzzy SMC Based on GSO-BFA
下载PDF
导出
摘要 为研究永磁同步电机(PMSM)在无速度传感器工况下的速度跟踪估计,以PMSM的工作原理为基础,建立内埋式PMSM的数学模型。基于自适应模糊微分积分滑模(AFDI-SMC)鲁棒性强的优点,提出了在萤火虫-细菌觅食(GSO-BFA)融合算法优化滑模控制器参数条件下采用旋转高频电压注入法对电机转速进行估计的无速度传感器控制方案,并分析了电机在高、低速运行时特点。实验结果表明,采用GSO-BFA融合算法优化滑模控制器参数并结合高频电压注入法的自适应模糊滑模控制系统在高速(2000 r/min)负载工况下的绝对误差为60 r/min,转速相对误差为3%,稳定运行时转子位置最大误差约为4°电角度(合2°机械角度);低速(50 r/min)负载工况下的绝对误差为8 r/min,转速相对误差为16%,稳定运行时转子位置最大误差约为5°电角度(合2.5°机械角度)。 Based on the principle of PMSM, a mathematical model of embedded PMSM was established for the study of speed tracking estimates of PMSM without speed sensor. The speed sensorless control scheme, which adopted rotating high frequency voltage injection method to estimate the speed of the motor, was pro- posed with fusion algorithms of glowworm swarm optimization and bacterial foraging algorithm (GSO-BFA) on the basis of robust advantages of adaptive fuzzy differential and integral sliding mode control (AFDI- SMC ), and its working characters at both high and low speed were also analyzed. Experimental results illus- trate that the relative error is approximately 3% (60 r/rain) at the loaded high speed (2000 r/rain) and 16% (8 r/min) at the loaded low speed (50 r/min) ; the absolute position error of rotor at stable condition is 4 electrical degrees (2 mechanical degrees) and 5 electrical degrees (2. 5 mechanical degrees) for each.
出处 《微电机》 2015年第7期94-99,共6页 Micromotors
基金 国家自然科学基金资助项目(61203113)
关键词 自适应模糊微分积分滑模控制 萤火虫-细菌觅食算法 旋转高频电压注入法 无速度传感器 adaptive fuzzy differential and integral sliding mode control ( AFDI-SMC ) glowworm swarm,optimization and bacterial foraging algorithm (GSO-BFA) rotating high frequency voltage injection method speed sensorless
  • 相关文献

参考文献10

二级参考文献83

共引文献642

同被引文献15

引证文献5

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部