期刊文献+

Combined Moho Parameters Determination Using CRUST1.0 and Vening Meinesz-Moritz Model 被引量:1

Combined Moho Parameters Determination Using CRUST1.0 and Vening Meinesz-Moritz Model
原文传递
导出
摘要 According to Vening Meinesz-Moritz (VMM) global inverse isostatic problem, either the Moho density contrast (crust-mantle density contrast) or the Moho geometry can be estimated by solv- ing a non-linear Fredholm integral equation of the first kind. Here solutions to the two Moho parame- ters are presented by combining the global geopotential model (GOCO-03S), topography (DTM2006) and a seismic crust model, the latter being the recent digital global crustal model (CRUST1.0) with a resolution of 1°×1°. The numerical results show that the estimated Moho density contrast varies from 21 to 637 kg/m3, with a global average of 321 kg/m^3, and the estimated Moho depth varies from 6 to 86 km with a global average of 24 km. Comparing the Moho density contrasts estimated using our least-squares method and those derived by the CRUST1.0, CRUST2.0, and PREM models shows that our estimate agrees fairly well with CRUST1.0 model and rather poor with other models. The estimated Moho depths by our least-squares method and the CRUST1.0 model agree to 4.8 km in RMS and with the GEMMA1.0 based model to 6.3 km. According to Vening Meinesz-Moritz (VMM) global inverse isostatic problem, either the Moho density contrast (crust-mantle density contrast) or the Moho geometry can be estimated by solv- ing a non-linear Fredholm integral equation of the first kind. Here solutions to the two Moho parame- ters are presented by combining the global geopotential model (GOCO-03S), topography (DTM2006) and a seismic crust model, the latter being the recent digital global crustal model (CRUST1.0) with a resolution of 1°×1°. The numerical results show that the estimated Moho density contrast varies from 21 to 637 kg/m3, with a global average of 321 kg/m^3, and the estimated Moho depth varies from 6 to 86 km with a global average of 24 km. Comparing the Moho density contrasts estimated using our least-squares method and those derived by the CRUST1.0, CRUST2.0, and PREM models shows that our estimate agrees fairly well with CRUST1.0 model and rather poor with other models. The estimated Moho depths by our least-squares method and the CRUST1.0 model agree to 4.8 km in RMS and with the GEMMA1.0 based model to 6.3 km.
出处 《Journal of Earth Science》 SCIE CAS CSCD 2015年第4期607-616,共10页 地球科学学刊(英文版)
关键词 CRUST1.0 density contrast ISOSTASY MOHO sediment thickness. CRUST1.0, density contrast, isostasy, Moho, sediment thickness.
  • 相关文献

参考文献30

  • 1Amante, C., Eakins, B. W., 2009. ETOPOI 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. NOAA, Technical Memorandum, NESDIS, NGDC-24. 19.
  • 2Bagherbandi, M., 2011. An lsostatic Earth Crustal Model and Its Application: [Dissertation]. Royal of Institute of Tech- nology, Stockholm. 65-72.
  • 3Bagherbandi, M., Sjoberg, L. E., 2012. Non-lsostatic Effects on Crustal Thickness: A Study Using CRUST2.0 in Fenno- scandia. Physics of the Earth and Planetary Interiors. 200/201 : 37-44. doi: 10.1016/j.pepi.2012.04.001.
  • 4Bagherbandi, M., Sjoberg, L. E., 2013. Improving Gravimetric- lsostatic Models of Crustal Depth by Correcting for Non- lsostatic Effects and Using CRUST2.0. Earth-Science Re- views, 117: 29-39. doi: 10.1016/j.earscirev.2012.12.002.
  • 5Bagherbandi, M., Tenzer, R., Sjoberg, L. E., et al., 2013. Im- proved Global Crustal Thickness Modeling Based on the VMM Isostatic Model and Non-lsostatic Gravity Correction. Journal of Geodynamics, 66: 25-37. doi: 10.1016/j.jog.2013.01.002.
  • 6Bassin, C., Laske, G., Masters, T. G., 2000. The Current Limits of Resolution for Surface Wave Tomography in North America. EOS Trans AGU, 81:F897.
  • 7Bouman, J., Ebbing, J., Meekes, S., et al., 2015. GOCE Gravity Gradient Data for Lithospheric Modeling. International Journal of Applied Earth Obsetwation and Geoinformation, 35: 16-30. doi:10.1016/j.jag.2013.11.001.
  • 8Cadek, O., Martinec, Z., 1991. Spherical Harmonic Expansion of the Earth's Crustal Thickness up to Degree and Order 30. Studia Geophysica et Geodaetica, 35(3): 151-165. do i: 10.1007/bf01614063.
  • 9Dziewonski, A. M., Anderson, D. L., 1981. Preliminary Reference Earth Model. Physics of the Earth and Planetary Interiors, 25(4): 297-356. doi:10.1016/0031-9201(81)90046-7.
  • 10Heiskanen, W. A., Moritz, H., 1967. Physical Geodesy. W. H. Freeman, New York. 130-133.

同被引文献18

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部