期刊文献+

基于小波和非局部的全变差中值先验重建算法 被引量:3

Total variation median prior reconstruction algorithm based on wavelet and nonlocal
下载PDF
导出
摘要 针对最大后验法只能提供有限的局部先验信息,使重建图像出现阶梯状边缘伪影及过度平滑等问题,提出一种基于小波收缩和非局部的全变差(total variation,TV)中值先验重建算法。在中值先验分布重建算法的目标函数中加入降噪能力优异的TV先验,提出基于TV的中值先验(median prior,MP)重建算法;针对重建图像边缘依然不清晰且存在块状伪影的问题,利用平稳小波变换具有良好的时频局部特性和平移不变性的特点,在基于TV的MP重建算法的每次迭代中,进行小波收缩和非局部降噪,进一步优化图像。仿真结果表明,该算法可以获得高质量的图像。 Total variation median prior reconstruction algorithm based on wavelet and nonlocal was put forward to solve the prob- lems of the stepladder edge and over-smoothness of reconstructed image resulted from using maximum a posterior. The median prior reconstruction algorithm based on total variation was proposed in which the total variation prior with good ability of noise reduction was added in the objective function of the median prior distribution reconstruction algorithm. To make the edge clear and solve the problem of block artifacts of reconstruction images, concerning the stationary wavelet transform having good local time-frequency features and translation invariance, wavelet shrinkage and nonlocal noise reduction were used in each iteration of the MP reconstruction algorithm based on TV so as to optimize the image quality. The simulation results show that this recon- struction algorithm can obtain high quality images.
出处 《计算机工程与设计》 北大核心 2015年第8期2152-2156,共5页 Computer Engineering and Design
基金 国家自然科学基金项目(61071192 61271357 61171178) 山西省国际合作基金项目(2013081035) 山西省研究生优秀创新基金项目(2009011020-2) 山西省研究生优秀创新基金项目(20123098) 中北大学第十届研究生科技基金项目(20131035) 山西省高等学校优秀青年学术带头人支持计划基金项目 中北大学2013年校科学基金计划基金项目
关键词 全变差 中值先验 图像重建 小波变换 非局部 total variation median prior image reconstruction wavelet transform nonlocal
  • 相关文献

参考文献4

二级参考文献24

  • 1沈焕锋,李平湘,张良培.一种基于正则化技术的超分辨影像重建方法[J].中国图象图形学报(A辑),2005,10(4):436-440. 被引量:15
  • 2吴亚东,孙世新.基于二维小波收缩与非线性扩散的混合图像去噪算法[J].电子学报,2006,34(1):163-166. 被引量:34
  • 3Geman S, Geman D.Stochastic relaxation, Gibbs distribution, and the Bayesian restoration of imge[J].IEEE Transactions on Pat- tern Analysis and Machine Intelligence, 1984,6(6):721-741.
  • 4Li S Z.Markov random field modeling in image analysis[M]. Berlin: Springer-Verlag, 2001.
  • 5Elbakri I A,Fessler J A.Statistical image reconstruction for polyenergetic X-ray computed tomography[J].IEEE Transactions on Medical Imaging, 2002,21 (2) : 89-99.
  • 6Chen Yang, Ma Jian-hua, Feng Qian-jin, et al.Nonlacal prior Bayesian tomographic reconstruction[J].Joumal of Mathematical Imaging and Vision,2008,30(2) : 133-146.
  • 7Green P J.Bayesian reconstructions from emission tomography data using a modified EM algorithm[J].IEEE Transactions on Medical Imaging, 1990,9 ( 1 ) : 84-93.
  • 8HERMAN G T. Image reconstruction from projections: Implementa- tion and application[M]. Berlin: Springer-Verlag, 1979.
  • 9SHEPP L A, VARDI Y. Maximum likelihood reconstruction for e- mission tomography[ J]. IEEE Transactions on Medical Imaging, 1982, 1(2) : 113 - 122.
  • 10LANGE K. Convergence of EM image reconstruction algorithms with Gibbs smoothness [ J]. IEEE Transactions on Medical Imaging, 1990, 9(4) : 439 -446.

共引文献11

同被引文献12

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部