期刊文献+

Best Constants for Moser-Trudinger Inequalities,Fundamental Solutions and One-Parameter Representation Formulas on Groups of Heisenberg Type 被引量:8

Best Constants for Moser-Trudinger Inequalities,Fundamental Solutions and One-Parameter Representation Formulas on Groups of Heisenberg Type
原文传递
导出
摘要 We derive the explicit fundamental solutions for a class of degenerate(or singular)one- parameter subelliptic differential operators on groups of Heisenberg(H)type.This extends the result of Kaplan for the sub-Laplacian on H-type groups,which in turn generalizes Folland's result on the Heisenberg group.As an application,we obtain a one-parameter representation formula for Sobolev functions of compact support on H-type groups.By choosing the parameter equal to the homogeneous dimension Q and using the Mose-Trudinger inequality for the convolutional type operator on stratified groups obtained in[18].we get the following theorem which gives the best constant for the Moser- Trudiuger inequality for Sobolev functions on H-type groups. Let G be any group of Heisenberg type whose Lie algebra is generated by m left invariant vector fields and with a q-dimensional center.Let Q=m+2q.Q'=Q-1/Q and Then. with A_Q as the sharp constant,where ▽G denotes the subelliptic gradient on G. This continues the research originated in our earlier study of the best constants in Moser-Trudinger inequalities and fundamental solutions for one-parameter subelliptic operators on the Heisenberg group [18]. We derive the explicit fundamental solutions for a class of degenerate(or singular)one- parameter subelliptic differential operators on groups of Heisenberg(H)type.This extends the result of Kaplan for the sub-Laplacian on H-type groups,which in turn generalizes Folland's result on the Heisenberg group.As an application,we obtain a one-parameter representation formula for Sobolev functions of compact support on H-type groups.By choosing the parameter equal to the homogeneous dimension Q and using the Mose-Trudinger inequality for the convolutional type operator on stratified groups obtained in[18].we get the following theorem which gives the best constant for the Moser- Trudiuger inequality for Sobolev functions on H-type groups. Let G be any group of Heisenberg type whose Lie algebra is generated by m left invariant vector fields and with a q-dimensional center.Let Q=m+2q.Q'=Q-1/Q and Then. with A_Q as the sharp constant,where ▽G denotes the subelliptic gradient on G. This continues the research originated in our earlier study of the best constants in Moser-Trudinger inequalities and fundamental solutions for one-parameter subelliptic operators on the Heisenberg group [18].
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2002年第2期375-390,共16页 数学学报(英文版)
基金 supported by NSF
关键词 Heisenberg group Groups of Heisenberg type Sobolev inequalities Moser-Trudinger inequalities Best constants One-Parameter representation formulas Fundamental solutions Heisenberg group Groups of Heisenberg type Sobolev inequalities Moser-Trudinger inequalities Best constants One-Parameter representation formulas Fundamental solutions
  • 相关文献

参考文献12

  • 1Juha Heinonen,Ilkka Holopainen.Quasiregular maps on Carnot groups[J].The Journal of Geometric Analysis.1997(1)
  • 2Giorgio Talenti.Best constant in Sobolev inequality[J].Annali di Matematica Pura ed Applicata Series.1976(1)
  • 3Moser J.A sharp form of an inequality by N. Trudinger[].Indiana University Mathematics Journal.1971
  • 4Folland GB.A fundamental solution for a subelliptic operator[].Bulletin of the American Mathematical Society.1973
  • 5Kaplan A.Fundamental solutions for a class of hypoelliptic PDE generated by composition of quadratic forms[].Transactions of the American Mathematical Society.1980
  • 6N S Trudinger.On Imbedding into Orlicz Spaces and Some Applications[].Journal of Mathematics and Mechanics.1967
  • 7Lieb EH.Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities[].Annals of Mathematics.1983
  • 8.
  • 9O’Neil R.Convolution operators and L(p,q) spaces[].Duke Mathematical Journal.1963
  • 10Carlen,E.,Loss,M.Extremals of functionals with competing symmetries[].Journal of Functional Analysis.1990

同被引文献6

引证文献8

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部