期刊文献+

基于Bag of Features模型的害虫图像分类技术研究 被引量:1

STUDY ON PEST IMAGE CLASSIFICATION WITH BASE ON BAG OF FEATURES MODEL
下载PDF
导出
摘要 将Bag of Features模型结合OpenCV开源图像库提取害虫图像的特征,然后用Kmedoids算法对其进行聚类,生成关键字,最后用AdaBoosting算法构建分类器,实验采用Pascal Voc图像库中的数据进行训练和测试,实验表明,该算法分类精度高、特征提取速度和分类速度也比较快。 In this paper, the Bag of features model had been combined with the OpenCV open source to extract image feature of insect, and then using K-medoids algorithm to cluster them and generate the key words dictionary query needs. Finally, it builds the sorter with adaboosting algorithm. The experiment uses the data in pascal image libary to do training and testing. The result shows that this algorithm has high training and testing speed, high accuracy on classification, ect. Moreover, the feature extraction and classificiton speed is very high.
出处 《粮食储藏》 2015年第4期28-32,共5页 Grain Storage
关键词 SIFT特征 聚类算法 图像分类性能 Scale invariant features, clustering algorithm, image classification performance
  • 相关文献

参考文献9

  • 1Lowe, David G. Object recognition from local scalein- variant features. International Conference on Computer Vision, Corfu, Greece (September 1999), P1150- 1157.
  • 2David G. Lowe. Distinctive image features from scale -invariant keypoints, International Conference on Computer Vision, 60, 2 (2004), P99-110.
  • 3赵清杰,钱芳,蔡利栋译.计算机视觉.机器工业出版社,2005.
  • 4K. Aas and L. Eikvil, Text categorisation: A survey, Technical report, 1999.
  • 5Sp/irck Jones, Karen (1972). A statistical interpreta- tion of term specificity and its application in retrieval, Journal of Documentation 28 (1) : 11-21.
  • 6徐义峰,陈春明,徐云青.一种改进的k-均值聚类算法[J].计算机应用与软件,2008,25(3):275-277. 被引量:41
  • 7苏锦旗,薛惠锋,詹海亮.基于划分的K-均值初始聚类中心优化算法[J].微电子学与计算机,2009,26(1):8-11. 被引量:34
  • 8张建民.一种改进的K-means聚类算法[J].微计算机信息,2010,26(9):233-234. 被引量:17
  • 9Robert E. Schapire and Yoram Singer, Improved Boos- ring Algorithms Using Confidence-rated Predictions, Machine Learning , 375 297-336, 1999.

二级参考文献15

  • 1高继森,赵杰,张忠辅,张晶.增强型K-means聚类算法在入侵检测中的应用[J].微计算机信息,2008,24(9):72-73. 被引量:5
  • 2蒋盛益,李庆华.一种增强的k-means聚类算法[J].计算机工程与科学,2006,28(11):56-59. 被引量:15
  • 3王洪春,彭宏.基于模糊C-均值的增量式聚类算法[J].微电子学与计算机,2007,24(6):156-157. 被引量:22
  • 4黄光球,王西邓,刘冠.基于网格划分策略的改进人工鱼群算法[J].微电子学与计算机,2007,24(7):83-86. 被引量:18
  • 5Han J W, Kamber M. Data mining concepts and techniques[ M].北京:高等教育出版社,2002:335-394.
  • 6Bradley P S, Fayyad U M. Refining initial points for K- Means clustering [ C ]// Proc. of the 15th International Conf. on Machine Learning. San Franciseo, CA: Morgan Kaufmann, 1998: 91 - 99.
  • 7Mob' d B Al- Daoud, Stuart A Roberts. New methods for the initialization of clusters[J]. Pattern Recognition Letters, 2001(17) :451 - 455.
  • 8Kaufman L, Rousseeuw P J. Finding groups in data:an introduction to cluster analysis[M]. NY:John Wiley&Sons, 1990.
  • 9Moh' d B,Al - Daoud,Stuart A Roberts. New methods for the initialization of clusters[J]. Pattern Recognition Letters,2002(17) :451 - 455.
  • 10He J, Lan M, Tan C L, et al. Initialization of cluster refinement algorithms: a review and comparative study [ C] // Proceedings of 2004 IEEE International Joint Conference on Neural Networks (IJCNN). Singapore, 2004 ; 279 - 302.

共引文献84

同被引文献30

引证文献1

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部