期刊文献+

Topological recursion relations on M_(3,2) 被引量:2

Topological recursion relations on M_(3,2)
原文传递
导出
摘要 We give some new genus-3 universal equations for Gromov-Witten invariants of compact symplectic manifolds. These equations were obtained by studying relations in the tautological ring of the moduli space of2-pointed genus-3 stable curves. A byproduct of our search for genus-3 equations is a new genus-2 universal equation for Gromov-Witten invariants. We give some new genus-3 universal equations for Gromov-Witten invariants of compact symplectic manifolds. These equations were obtained by studying relations in the tautological ring of the moduli space of2-pointed genus-3 stable curves. A byproduct of our search for genus-3 equations is a new genus-2 universal equation for Gromov-Witten invariants.
出处 《Science China Mathematics》 SCIE CSCD 2015年第9期1909-1922,共14页 中国科学:数学(英文版)
基金 supported by National Security Agency(Grant No.H98230-10-1-0179) the National Science Foundation of USA(Grant No.DMS-0905227) a Tian-Yuan Special Fund of National Natural Science Foundation of China(Grant No.11326023) Specialized Research Fund for the Doctoral Program of Ministry of Higher Education(Grant No.20120001110051) Peking University 985 Fund
关键词 Gromov-Witten invariants universal equations symplectic manifolds 递归关系 Witten不变量 通用方程 拓扑 稳定曲线 辛流形 模空间 副产品
  • 引文网络
  • 相关文献

参考文献26

  • 1Arbarello E, Cornalba M. Calculating cohomology groups of moduli spaces of curves via algebraic geometry. Inst Hautes Trtudes Sci Publ Math, 1998, 88:97- 127.
  • 2Belorousski P, Pandharipande R. A descendent relation in genus 2. Ann Scuola Norm Sup Pisa C1 Sci, 2000, 29: 171- 191.
  • 3Bergstrom a. Cohomology of moduli spaces of curves of genus three via point counts. J Reine Angew Math, 2008, 622: 155- 187.
  • 4Dubrovin B, Zhang Y. Bihamiltonian hierarchies in 2D topological field theory at one-loop approximation. Comm Math Phys, 1998, 198:311 -361.
  • 5Eguchi T, Hori K, Xiong C. Quantum cohomology and virasoro algebra. Phys Lett Ser B, 1997, 402:71-80.
  • 6Faber C, Pandharipande R. Relative maps and tautological classes. J Eur Math Soc, 2005, 7:13-49.
  • 7Gathmann A. Topological recursion relations and Gromov-Witten invariants in higher genus. ArXiv:math/0305361, 2003.
  • 8Getzler E. Intersection theory on M1,4 and elliptic Gromov-Witten Invariants. J Amer Math Soc, 1997, 10:973- 998.
  • 9Getzler E. Topological recursion relations in genus 2. In: Integrable systems and algebraic geometry. River Edge: World Sci Publ, 1998, 73-106.
  • 10Givental A. Gromov-Witten invariants and quantization of quadratic hamiltonians. Mosc Math J, 2001, 1:551-568.

同被引文献1

引证文献2

二级引证文献1

;
使用帮助 返回顶部