摘要
A facile synthesis of Sn O2/corncob-derived activated carbon(CAC) composite was proposed,and the CAC used here has high specific surface area(over 3000 m2/g) and ample oxygen-containing functional groups.The microstructures and morphology as well as electrochemical performance of the Sn O2/CAC composites were investigated by X-ray diffraction,scanning electron microscopy,transmission electron microscopy and relevant electrochemical characterization. The results show that the mass ratios of Sn O2 to CAC have a significant effect on the structures and properties of the composites. The sample with 34% Sn O2 delivered a capacity of 879.8 m Ah/g in the first reversible cycle and maintained at 634.0 m Ah/g(72.1% retention of the initial reversible capacity) after 100 cycles at a current density of 200 m A/g. After 60 cycles at different specific currents from 200 to 2000 m A/g,the reversible specific capacity was still maintained at 632.8 m Ah/g at a current density of 200 m A/g. These results indicate that SnO 2/CAC can be a desirable alternative anode material for lithium ion batteries.
A facile synthesis of Sn O2/corncob-derived activated carbon(CAC) composite was proposed,and the CAC used here has high specific surface area(over 3000 m2/g) and ample oxygen-containing functional groups.The microstructures and morphology as well as electrochemical performance of the Sn O2/CAC composites were investigated by X-ray diffraction,scanning electron microscopy,transmission electron microscopy and relevant electrochemical characterization. The results show that the mass ratios of Sn O2 to CAC have a significant effect on the structures and properties of the composites. The sample with 34% Sn O2 delivered a capacity of 879.8 m Ah/g in the first reversible cycle and maintained at 634.0 m Ah/g(72.1% retention of the initial reversible capacity) after 100 cycles at a current density of 200 m A/g. After 60 cycles at different specific currents from 200 to 2000 m A/g,the reversible specific capacity was still maintained at 632.8 m Ah/g at a current density of 200 m A/g. These results indicate that SnO 2/CAC can be a desirable alternative anode material for lithium ion batteries.
基金
supported by the National High Technology Research and Development Program of China (863 Program) (2012AA053305)