期刊文献+

标准低密度奇偶校验码译码算法中量化结构 被引量:1

Design of quantitative structure of LDPC decoded algorithm
下载PDF
导出
摘要 DVB-S2标准低密度奇偶校验码(LDPC)译码器在深空通信中面临着低复杂度、高灵活性及普适性方面的迫切需求。通过对LDPC译码算法中量化结构的研究,提出一种动态自适应量化结构的设计方法。该方法在常规均匀硬件量化的基础上,提出了修正化Min-Sum译码算法中的数据信息初始化及迭代译码的动态自适应量化结构,解决了DVB-S2标准LDPC码译码时存在的校验节点运算与变量节点运算之间的复杂度不平衡的问题,并由此提高了译码器的译码性能。实验证明,以DVB-S2标准LDPC码中码长为16 200,码率为1/2的为例,提供动态自适应量化结构与常规的均匀量化结构相比,节省硬件资源为4%。此外,动态自适应量化结构支持动态可配置功能,保证了DVB-S2标准LDPC译码器的灵活性及普适性。 In deep space communications, the Low Density Parity Check(LDPC) Codes decoding based on DVB-S2(Second Generation Satellite Digital Video Broadcasting Standard) must meet the requirements of low complexity, high flexibility and universal aspects. This paper presents a methodology to design a dynamic adaptive quantitative structure based on studying the quantitative structure of LDPC decoding. Based on conventional uniform quantization of the hardware, a dynamic adaptive quantization structure for data information initialization and iteration decoding of modified Min-Sum decoding algorithm is proposed, which reduces the complexity imbalance between the check node processing units and variable node processing units, therefore, improves the decoding performance of the decoder. Experiments show that, for the DVB-S2 standard LDPC code with code length of 16 200 and rate of 1/2, the proposed dynamic adaptive quantization structure saves 4% hardware resources compared with the conventional adaptive quantization structure. In addition, the dynamic adaptive quantization structure supports dynamic configuration functions, which ensures the flexibility and universality of LDPC decoder.
出处 《太赫兹科学与电子信息学报》 2015年第4期584-589,共6页 Journal of Terahertz Science and Electronic Information Technology
基金 国家自然科学基金资助项目(61404140 61271149 61106033)
关键词 DVB-S2标准 低密度奇偶校验码 译码器优化设计 量化结构 DVB-S2 Low Density Parity Check(LDPC) Codes optimized design of decoder quantitative structure
  • 相关文献

参考文献12

  • 1孙钰林,王菊花,吴增印.LDPC码在深空通信中的兼容编码技术[J].信息与电子工程,2012,10(1):18-21. 被引量:5
  • 2Gallager R. Low density parity check codes[J]. IRE Trans. on Inform. Theory, 1962,IT-8(1):21-28.
  • 3MacKay D J C,Neal R M. Near Shannon limit performance of low density parity check codes[J]. Electro. Lett., 1996,32(18):1645-1646.
  • 4WU Zijing,SU Kaixiong,GUO Liting. A modified Min Sum decoding algorithm based on LMMSE for LDPC codes[J]. AEUInternationalJournal of Electronics and Communications, 2014,68(10):994-999.
  • 5Roberts M K,Jayabalan R. A modified normalized Min-Sum decoding algorithm for irregular LDPC codes[J]. InternationalJournal of Engineering and Technology, 2013,5(6):4881.
  • 6ZHANG Xiaojie,Siegel P H. Quantized Min-Sum decoders with low error floor for LDPC codes[C]// 2012 IEEE InternationalSymposium on Information Theory Proceedings(ISIT). Cambridge,MA:IEEE, 2012:2871-2875.
  • 7CHEN Zhengkang,ZHANG Huisheng,LI Lixin,et al. Uniform quantization of LDPC codes for 8PSK modulation[C]// 20131EEE International Conference on Signal Processing,Communication and Computing(ICSPCC). Kunming,China:IEEE, 2013:1-4.
  • 8周昱,刘荣科,侯毅.一种提高LDPC译码层内并行度的方法[J].信息与电子工程,2012,10(6):719-724. 被引量:2
  • 9钟州,金梁,黄开枝,白慧卿,易鸣.基于二维信息修正减小LDPC码安全间隙的译码算法[J].电子与信息学报,2013,35(8):1946-1951. 被引量:4
  • 10Oh D, Parhi K K. Min-Sum decoder architectures with reduced word length for LDPC codes[J]. IEEE Transactions onCircuits and Systems--:Regular Papers, 2010,57(1):105-115.

二级参考文献56

  • 1华力,雷菁,于聪梅.DVB-S2中LDPC码编码器的FPGA设计与实现[J].中国有线电视,2006(23):2307-2310. 被引量:6
  • 2MacKay D J C and Neal R M. Near shannon limit performance of low density parity check codes [J]. Electronics Letters, 1996, 32(18): 1645-1646.
  • 3Jiang Nan, Peng Kewu, Song Jian, et al.. High- throughput QC-LDPC decoders [J]. IEEE Transactions on Broadcasting, 2009, 55(2): 251-259.
  • 4Zhao J, Zarkeshvari F, and Banihashemi A H. On implementation of min-sum algorithm and its modifications for decoding Low-Density Parity-Check (LDPC) codes [J]. IEEE Transactions on Communications, 2005, 53(4): 549-554.
  • 5Masera G, Quaglio F, and Vacca F. Finite precision implementation of LDPC decoders [C]. IEE Proceedings- Communications, 2005, 152(6): 1098-1102.
  • 6Dai Yongmei, Chen N, Arnold Z Yan, et al.. Memory efficient decoder architectures for quasi-cyclic LDPC codes [J]. IEEE Transactions on Circuits and Systems, 2008, 55(9): 2898-2911.
  • 7Huang Q, Kang J, Zhang L, et al.. Two reliability-based iterative majority-logic decoding algorithms for LDPC codes [J]. IEEE Transactions on Communications, 2009, 57(12): 3597-3606.
  • 8Lee J K and Thorpe J. Memory-efficient decoding of LDPC codes [C]. IEEE International Symposium on Information Theory, Adelaide, Australia, 2005: 459-463.
  • 9Daesun Oh and Parhi K K. Min-sum decoder architectures with reduced word length for LDPC codes [J]. IEEE Transactions on Circuits and Systems, 2010, 57(1): 105-115.
  • 10Zhong Z, Li Y, Chen X, et al.. Modified min-sum decoding algorithm for LDPC codes based on classified correction [C]. International Conference on Communications and Networking in China, Hangzhou, China, 2008: 932-936.

共引文献12

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部