期刊文献+

基于运动信息引导的高原鼠兔目标跟踪方法 被引量:1

Object Tracking Method of Ochotona curzoniae Based on Guidance of Motion Information
下载PDF
导出
摘要 针对自然生境环境下高原鼠兔平滑运动和突变运动共存时,基于平滑性运动假设的跟踪方法稳定性和准确性低的问题,提出了一种运动信息引导的高原鼠兔跟踪方法。通过提取鼠兔相邻帧的运动信息,利用运动信息来判断鼠兔的运动模式,从而采取相应的采样跟踪策略。当运动模式判定为平滑运动时,采用马尔可夫链蒙特卡罗采样跟踪方法;当运动模式判定为突变运动时,采用Wang-Landau蒙特卡罗采样跟踪方法。实验结果表明:基于运动信息引导的目标跟踪方法的成功率达到95.49%,而Wang-Landau蒙特卡罗方法的成功率为93.68%;所提方法的中心点误差均值和方差为13.46和67.89,分别是Wang-Landau蒙特卡罗方法的84.18%和40.67%,减小了15.82%和59.33%。 Due to the randomness and unpredictability of Ochotona curzoniae movement, the motions of Ochotona curzoniae contain smooth motions and abrupt motions in natural habitat environment. Under the circumstance of abrupt motions, the target position displacement is large between two adjacent frames. The stability and accuracy of the tracking method based on smooth motion hypothesis are difficult to guarantee. And abrupt motions are easy to cause Ochotona curzoniae tracking failure because abrupt motions violate the motion smoothness constraint. In allusion to the tracking problem of Ochotona curzoniae that smooth motions and abrupt motions coexistence, an Ochotona curzoniae tracking method based on the guidance of motion information was proposed. Considering the prior knowledge that the position displacement between two adjacent frames is smaller in smooth movement and the position displacement between two adjacent frames is larger in abrupt motion, motion information between the adjacent frames was extracted by the frame difference method at first and then the movement mode of Ochotona curzoniae was judged by motion information and appropriate sampling tracking strategy was taken to track Ochotona curzoniae. If the mode was judged to be a smooth motion mode, the Markov Chain Monte Carlo (MCMC) sampling tracking method based on the motion smoothness assumption was employed. Or else Wang - Landau Monte Carlo (WLMC) sampling tracking method used for abrupt motion tracking was adopted. The experimental results show that the proposed method can not only ensure the Ochotona curzoniae tracking performance of abrupt motions but also improve the Ochotona curzoniaetracking performance of smooth motions. The tracking success rate of proposed method was 95.49%, but the tracking success rate of WLMC method was 93.68%, the mean value and the variance of central point error in the proposed method were 13.46 and 67.89, which were 84. 18% and 40.67% of those in the WLMC method, reduced by 15.82% and 59. 33%, respectively.
出处 《农业机械学报》 EI CAS CSCD 北大核心 2015年第9期34-38,8,共6页 Transactions of the Chinese Society for Agricultural Machinery
基金 国家自然科学基金资助项目(61362034 81360229 61265003) 甘肃省自然科学基金资助项目(1310RJY020 1212RJYA033 2014GS02715)
关键词 高原鼠兔 目标跟踪运动信息 马尔可夫链蒙特卡罗 Wang—Landau蒙特卡罗 Ochotona curzoniae Object tracking Motion information Markov chain Monte CarloWang- Landau Monte Carlo
  • 相关文献

参考文献5

二级参考文献69

  • 1侯志强,韩崇昭.视觉跟踪技术综述[J].自动化学报,2006,32(4):603-617. 被引量:255
  • 2李培华.一种改进的Mean Shift跟踪算法[J].自动化学报,2007,33(4):347-354. 被引量:53
  • 3Doucet A, Godsill S, Andrieu C. On sequential Monte Carlo sampling methods for Bayesian filtering. Statistics and Computing, 2000, 10(3): 197- 208.
  • 4Li P, Zhang T, Pece A E. Visual contour tracking based on particle filters. Image and Vision Computing, 2003, 21(1): 111-123.
  • 5Nummiaro K, Koller Meier E B, Van Gool L. An adaptive color based particle filter. Image and Vision Computing, 2003, 21(1): 100 -110.
  • 6Perez P, Hue C, Vermaak J, Gangnet M. Color-based probabilistic tracking//Proceedings of the European Conference on Computer Vision. Copenhagen, Denmark, 2002:661-675.
  • 7Jacquot A, Sturm P, Ruch O. Adaptive tracking of non-rigid objects based on color histograms and automatic parameter selection//Proceedings of the IEEE Workshop on Motion and Video Computing, Breckenridge, USA, 2005: 103-109.
  • 8Town C. Multi-sensory and multi modal fusion for sentient computing. International Journal of Computer Vision, 2007, 71(2):235- 253.
  • 9Viola P, Jones M. Rapid object detection using a boosted cascade of simple features//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Kauai Marriott, Hawaii, USA, 2001:511 -518.
  • 10Yang C, Duraiswami R, Davis L S. Fast multiple object tracking via a hierarchical particle filter//Proceedings of the IEEE Conference on Computer Vision. Beijing, China, 2005, 212- 219.

共引文献89

同被引文献10

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部