期刊文献+

Enhancement of fluorescence emission and signal gain at 1.53 μm in Er^(3+)/Ce^(3+) co-doped tellurite glass fiber

Enhancement of fluorescence emission and signal gain at 1.53 μm in Er^(3+)/Ce^(3+) co-doped tellurite glass fiber
原文传递
导出
摘要 Er3+/Ce3+ co-doped tellurite glasses with composition of TeO2-GeO2-Li2O-Nb2O5 were prepared using conventional melt-quenching technique for potential applications in Er3+-doped fiber amplifier(EDFA). The absorption spectra, up-conversion spectra and 1.53 μm band fluorescence spectra of glass samples were measured. It is shown that the 1.53 μm band fluorescence emission intensity of Er3+-doped tellurite glass fiber is improved obviously with the introduction of an appropriate amount of Ce3+, which is attributed to the energy transfer(ET) from Er3+ to Ce3+. Meanwhile, the 1.53 μm band optical signal amplification is simulated based on the rate and power propagation equations, and an increment in signal gain of about 2.4 d B at 1 532 nm in the Er3+/Ce3+ co-doped tellurite glass fiber is found. The maximum signal gain reaches 29.3 d B on a 50 cm-long fiber pumped at 980 nm with power of 100 m W. The results indicate that the prepared Er3+/Ce3+ co-doped tellurite glass is a good gain medium applied for 1.53 μm broadband and high-gain EDFA.
出处 《Optoelectronics Letters》 EI 2015年第5期361-365,共5页 光电子快报(英文版)
基金 supported by the National Natural Science Foundation of China(No.61177087) the Graduate Innovative Scientific Research Project of Zhejiang Province(No.YK2010048) the Scientific Research Foundation of Graduate School of Ningbo University(No.G13035) K.C.Wong Magna Fund and Hu Lan Outstanding Doctoral Fund in Ningbo University
关键词 EDFA amplifier pumped glasses attributed amplification Ce in Er broadband reaches 碲酸盐玻璃 信号增益 玻璃光纤 荧光发射 掺碲 掺铒光纤放大器 CE Er3+
  • 相关文献

参考文献16

  • 1M. S. Sajna, Sunil Thomas, K. A. Ann Mary, Cyriac Joseph, P. R. Biju and N. V. Unnikrishnan, Journal of Luminescence 159, 55 (2015).
  • 2Y. Hu, S. Jiang, G. Sorbello, T. Luo, Y. Ding, B. C. Hwang and N. Peyghambarian, Journal of the Optical Society of America B-Optical Physics 18, 1928 (2001).
  • 3M. t~elikbilek, A. E. Ersundu, E.O. Zayim and S. Aydin, Journal of Alloys and Compounds 637, 162 (2015).
  • 4W. J. Zhang, J. Lin, M. Z. Cheng, S. Zhang, Y. J. Jia and J. H. Zhao, Journal of Quantitative Spectroscopyand Radiative Transfer 159, 39 (2015).
  • 5R. Anthony, R. Lahiri and S. Biswas, Microwave and Optical Technology Letters 125, 2463 (2014).
  • 6A. Pandey, S. Sore, V. Kumar, V. Kumar, K. Kumar, V. K. Rai and H. C. Swart, Sensors and Actuators B-Chemical 202, 130~5 (2014).
  • 7S. C. Zheng, Y. W. Qi, S. X. Peng, D. D. Yin, Y. X. Zhou and S. X. Dai, Optoelectronics Letters 9, 461 (2013).
  • 8G. Dantelle, M. Mortier, D. Vivien and G. Patriarche, Optical Materials 28, 638 (2006).
  • 9T. Sasikala, L. R. Moorthy, K. Pavani and T. Chengaiah, Journal of Alloys and Compounds 542, 271 (2012).
  • 10B. R. Judd, Physical Review 127, 750 (1992).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部