期刊文献+

20cm口径离子推力器寿命模型及评估 被引量:4

Simulation of LIPS-200 Ion Thruster and Failure Analysis
下载PDF
导出
摘要 为了系统地分析LIPS-200离子推力器交换电荷(CEX)离子对加速栅壁面的轰击溅射腐蚀机理,本文针对该推力器栅极系统最关键的两种磨损失效模式,即加速栅结构失效和电子反流失效,利用数值模拟Paritle-in-cell(PIC)和Monte-Carlo collision(MCC)方法,仿真模拟了束流引出过程中CEX离子的产生、加速及引出过程,得到了主束流离子空间位置分布、静电势分布、CEX离子分布和对应的密度分布。同时,采用数值仿真计算和理论分析相结合的方法对栅极寿命进行了评估。计算结果显示在现有几何结构和工作电参数一定的情况下,LIPS-200离子推力器栅极系统能很好地引出束流离子,无CEX离子直接轰击到加速栅壁面,程序统计到的整个栅极系统加速栅壁面截获的CEX离子电流约为9.76×10-4A。证明了加速栅电流的主要来源是冲击到壁面的CEX离子,计算得到的加速栅电流与束流电流比例为0.122%。LIPS-200离子推力器栅极寿命为11230.1 h,其对应的关键失效模式为加速栅结构失效。 The sputtering erosion of the acceleration grid assembly of LIPS-200 ion-thruster by the charge exchange xenon (CEX) ions,generated by collision between Xe-ions and neutral atoms, was approximated, modeled, analyzed and numerically simulated in Monte-Carlo collision method and with software Particle-in-ceU (PIC) to understand the grid' s failure mechanisms. The generation, acceleration and extraction of CEX ions were investigated;the spatial distributions of the Xe-ion beam, electrostatic potential and CEX density were calculated and the lifetime of the grid assembly was evalu- ated. The calculated and simulated results show that LIPS-200 ion-thruster is capable of extracting the beam current under the routine conditions; the grid surfaces suffer no direct sputtering erosion by the CEX ions; and that the CEX ion current, intercepted by the accelerator, is calculated to be 9.76 ×10.4 A, dominating the acceleration current and being only 0.122% of the beam current.The lifetime of LIlXS-200 ion-thruster is about 11230.1 h and erosion damage of the grid structure accounts for the failure mechanism.
出处 《真空科学与技术学报》 EI CAS CSCD 北大核心 2015年第9期1088-1093,共6页 Chinese Journal of Vacuum Science and Technology
基金 国家安全重大基础研究973项目(613234)
关键词 LIPS-200离子推力器 交换电荷碰撞 栅极失效 寿命 LIPS-200 ion thruster, Exchange charged collision, Failure, Lifetime
  • 相关文献

参考文献22

  • 1周志成,曲广吉.北京:中国科学技术出版社[M],2012:208-213.
  • 2张天平.国外离子和霍尔电推进技术最新进展[J].真空与低温,2006,12(4):187-193. 被引量:61
  • 3周志成,王敏,李烽,蔡国飙,汤海滨.我国通信卫星电推进技术的工程应用[J].国际太空,2013(6):40-45. 被引量:11
  • 4王敏,周志成.Alphabus卫星平台研制进展及技术特点分析[J].航天器工程,2010,19(2):99-105. 被引量:5
  • 5Brophy J R,Polk J E,Randolph T M,et al.Lifetime Qualification of Electric Thrusters for Deep Space Missions[R].AIAA,2008:5184.
  • 6Brophy J R,Katz I,Polk J E,et al.Numerical Simulations of Ion Thruster Accelerator Grid Erosion[R].AIAA,2002:4261.
  • 7Okawa Y,Takegahara H,Tachinabana T.Numerical Analysis of Ion Beam Extraction Phenomena in an Ion Thruster[R].IEPC,2001:097.
  • 8Kaufman H R.Technology of Electron-Bombardment Ion Thruster[J].Advances in Electronics and Electron Physics,1974,36(3):265-373.
  • 9Polk J E,Moore N R,Brophy J R.The Role of Analysis and Testing in the Service Assessment of Ion Engines[R].IEPC,1995:0228.
  • 10Brophy J R,Polk J E.Ion Engine Service Life Validation by Analysisand Testing[R].AIAA,1996:2715.

二级参考文献79

  • 1钟凌伟,刘宇,王海兴,汤海滨,任军学.电荷交换离子对栅极系统束流影响的数值研究[J].航空动力学报,2009,24(8):1911-1916. 被引量:6
  • 2郑茂繁,江豪成,顾左,高军,郭宁,梁凯.20cm氙离子推力器3000h寿命实验[J].航天器环境工程,2009,26(4):374-377. 被引量:16
  • 3黄良甫.电推进系统发展概况与趋势[J].真空与低温,2005,11(1):1-8. 被引量:12
  • 4JANKOVSKY R S,JACOBSON D T,RAWLIN V K,et al.NASA's Hall Thruster Program[R].AIAA-2001-3888,2001.
  • 5JANKOVSKY R S,JACOBSON D T,PI(N)ERO L R,et al.NASA's Hall Thruster Program 2002[R].AIAA-2002-3675,2002.
  • 6JACOBSON D T,MANZELLA D H,HOFER R R,et al.NASA's 2004 Hall Thruster Program[R].AIAA-2004-3600,2004.
  • 7OH D Y.Electric propulsion[J].Aerospace America,2001,December:58~59.
  • 8OLESON S.Electric propulsion[J].Aerospace America,2002,December:58~59.
  • 9BLANDINO J.Electric propulsion[J].Aerospace America,2003,December:60~61.
  • 10BAGGETT R,DANKANICH J.Electric propulsion[J].Aerospace America,2004,December:58~59.

共引文献97

同被引文献23

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部