期刊文献+

江西省经济增长中能源消费与碳排放的预测分析——基于非线性灰色伯努利模型

Forecast Analysis of Energy Consumption and Carbon Emissions in Economic Growth of Jiangxi Province——Based on Nonlinear Gray Bernoulli Model
下载PDF
导出
摘要 使用非线性灰色伯努利模型预测了2014-2022年江西省能源消费与碳排放的量值,整体而言,江西省的能源消费总量和碳排放总量在增长率呈现下降的趋势。非线性灰色伯努利模型具有较好的预测能力,预测发现到2022年江西省的能源消费量达到11 060.1万吨标准煤,碳排放达到6 282.4万吨;从2014年到2022年江西省能源消费量的年均增长率为4.06%,碳排放量的年均增长率为3.11%。 This article uses the nonlinear gray Bernoulli model to predict the energy consumption and carbon emissions in Jiangxi province in 2014 - 2022. As a whole, in Jiangxi province, the total energy consumption and carbon emissions in the growth rate show a trend of decline. Nonlinear gray Bernoulli model has good prediction ability, forecasting in 2022 in Jiangxi province the energy consumption will reach 110.601 million tons of standard coal and carbon emissions 62.824 million tons; From 2014 to 2022 in Jiangxi province, the average annual growth rate of energy consumption will be 4.06%, and the annual growth rate of carbon emissions will be 3.11% .
出处 《怀化学院学报》 2015年第9期17-20,共4页 Journal of Huaihua University
基金 江西省社科规划青年项目(14YJ35) 江西省教育厅科技项目(GJJ14763)
关键词 能源消费 碳排放 非线性灰色伯努利模型 energy consumption carbon emissions nonlinear gray Bernoulli model
  • 相关文献

参考文献12

  • 1Amarawickrama HA, Hunt LC. Electricity demand for Sri Lanka: a time series analysis [J]. Energy, 2009 (33) (1): 724-739.
  • 2Bianco , Manca O, Nardini S. Electricity consumption forecasting in Italy using linear regression models [ J ]. Energy, 2009, 34 ( 9 ) : 1413 - 1421.
  • 3Bowden N, Payne JE. Short term forecasting of electricity prices for MISO hubs : evidence from ARIMA - EGAR.EH models [ J ]. Energy Economics, 2008, 30 (6): 3186-3197.
  • 4Pappas SS, Ekonomou L, karamousantas DC, Chatzarakis GE, Katsikas SK, Liatsis P. Electricity demand loads modeling using Auto Regressive moving average (ARMA) models [J]. Energy, 2008, 33 (9) : 1353 - 1360.
  • 5Kaynar O, Yilmaz I, Demirkoparan F. Forecasting of natural gas consumption with neural network and neuro fuzzy system [J ]. Energy Education Science and Technology, 2011, 26:221 -238.
  • 6Azadeh A, Khakestani M, Sabefi M. A ? exible fuzzy regression algorithm for forecasting oil consumption estimation [J]. Energy Policy, 2009, 37:5567 - 5579.
  • 7Li K, Su H. Forecasting building energy consumption with hybrid genetic algorithm- hierarchical adaptive network - based fuzzy inference system [J]. Energy and Buildings, 2010, 42: 2070- 2076.
  • 8程胜.基于混沌—神经网络时间序列的农村能源消费预测研究[J].农业技术经济,2009(3):67-71. 被引量:12
  • 9曾胜.中国能源消费、经济增长与能源需求预测的研究[J].管理评论,2011,23(2):38-44. 被引量:21
  • 10杜强,陈乔,陆宁.基于改进IPAT模型的中国未来碳排放预测[J].环境科学学报,2012,32(9):2294-2302. 被引量:62

二级参考文献93

共引文献159

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部