摘要
To achieve high efficiency utilization of high-chromium vanadium-titanium magnetite (V-Ti-Cr) fines, an investigation of V Ti42r fines was conducted using a sinter pot. The chemical composition, particle parameters, and granulation of V-Ti-Cr mixtures were analyzed, and the effects of sintering parameters on the sintering behaviors were investigated. The results indicated that the optimum quicklime dosage, mixture moisture, wetting time, and granulation time for V-Ti-Cr fines are 5wt%, 7.5wt%, 10 min, and 5-8 min, respectively. Meanwhile, the vertical sintering speed, yield, tumbler strength, and productivity gains were shown to be 21.28 mm/min, 60.50wt% , 58.26wt%, and 1.36 t·m^-2·h^-1, respectively. Furthermore, the consolidation mechanism of V-Ti-Cr fines was clarified, revealing that the consolidation of a V-Ti-Cr sinter requires an approximately 14vo1% calcium ferrite liquid-state, an approximately 15vo1% silicate liq- uid-state, a solid-state reaction, and the recrystallization of magnetite. Compared to an ordinary sinter, calcium ferrite content in a V-Ti-Cr sinter is lower, while the perovskite content is higher, possibly resulting in unsatisfactory sinter outcomes.
To achieve high efficiency utilization of high-chromium vanadium-titanium magnetite (V-Ti-Cr) fines, an investigation of V Ti42r fines was conducted using a sinter pot. The chemical composition, particle parameters, and granulation of V-Ti-Cr mixtures were analyzed, and the effects of sintering parameters on the sintering behaviors were investigated. The results indicated that the optimum quicklime dosage, mixture moisture, wetting time, and granulation time for V-Ti-Cr fines are 5wt%, 7.5wt%, 10 min, and 5-8 min, respectively. Meanwhile, the vertical sintering speed, yield, tumbler strength, and productivity gains were shown to be 21.28 mm/min, 60.50wt% , 58.26wt%, and 1.36 t·m^-2·h^-1, respectively. Furthermore, the consolidation mechanism of V-Ti-Cr fines was clarified, revealing that the consolidation of a V-Ti-Cr sinter requires an approximately 14vo1% calcium ferrite liquid-state, an approximately 15vo1% silicate liq- uid-state, a solid-state reaction, and the recrystallization of magnetite. Compared to an ordinary sinter, calcium ferrite content in a V-Ti-Cr sinter is lower, while the perovskite content is higher, possibly resulting in unsatisfactory sinter outcomes.
基金
the National High Technology Research and Development Program of China (Nos. 2012AA062302 and 2012AA062304)
the Program of the National Natural Science Foundation of China (Nos. 51090384 and 51174051)
The International Cooperation of the Ministry of Science and Technology of China (No. 2012DFR60210)