期刊文献+

基于情感语义的图像注释与检索 被引量:5

Image Annotation and Retrieval Based on Emotion Semantic
下载PDF
导出
摘要 图像情感语义的注释与检索起步不是很久,涉及了很多学科的综合知识,需要对心理学、计算机科学、生理学等各门学科的知识和前沿成果都有比较深入的了解,这个领域的研究充满了挑战和难度,同时其后续研究也存在着很大的可能性。情感语义是图像语义的最高层次,在图像情感语义注释和检索中起着很重要的作用。文中具体研究了底层特征提取中现有的一些常用方法,构建出图像的底层特征数据库。应用因子分析法对实验收集的用户情感数据库进行分析,构建出情感空间作为图像情感语义注释的基础。首次将LSSVM应用于图像情感语义注释上,实现了图像底层特征到高层情感语义的映射。然后通过相似度计算,在情感空间中完成图像的情感检索。实验结果取得了不错的用户满意度。 Image annotation and retrieval involves comprehensive knowledge of many disciplines, needs to be clear in the heart about psy- chology ,physiology,computer science and other subjects of knowledge and cutting-edge results. The research in this field is full of chal- lenge and difficulty ,but at the same time its follow-up studies also exists a lot of possibilities. Emotion semantic is the highest level of image semantics, it is extremely important in image emotion semantic annotation and retrieval. In this paper, study some existing common- ly used methods of underlying feature extraction, build up the image characteristics of the underlying database. Apply factor analysis meth- od m analyze the collection of user emotional database, and build emotional space as the basis of image emotional semantic annotation. LSSVM is applied to image semantic annotation for the first time,realizing the image characteristics of the underlying semantic mapping to the top. Then, through the calculation of similarity in the emotional space, complete the image retrieval. The experimental results have achieved good user satisfaction.
出处 《计算机技术与发展》 2015年第10期13-18,共6页 Computer Technology and Development
基金 上海市科学技术委员会资助项目(14590500500) 上海市自然科学基金(15ZR1415200) 上海高校青年教师培养资助计划(ZZSD13008)
关键词 “维量”思想 图像检索 情感语义注释 因子分析 LSSVM神经网络 "Dimensional" thinking image retrieval emotional semantic annotation factor analysis Least Squares Support Vector Ma-chine (LSSVM) neural network
  • 引文网络
  • 相关文献

参考文献14

  • 1向友君,谢胜利.图像检索技术综述[J].重庆邮电学院学报(自然科学版),2006,18(3):348-354. 被引量:39
  • 2Chen H L, Rasmussen E M. Intellectual access to images[ J]. Library Trends, 1999,48 ( 2 ) : 291 - 302.
  • 3李向阳,庄越挺,潘云鹤.基于内容的图像检索技术与系统[J].计算机研究与发展,2001,38(3):344-354. 被引量:153
  • 4王伟凝,余英林.图像的情感语义研究进展[J].电路与系统学报,2003,8(5):101-109. 被引量:11
  • 5Neumann D,Gegenfurtner K R. Image retrieval and perceptual similarity [ J ]. ACM Transactions on Applied Perception, 2006,3( 1 ) :31-47.
  • 6Ritendra D, Dhiraj J, Jia L, et al. Image retrieval : ideas, influ- ences,and trends of the new age [ J ]. ACM Computing Sur- veys,2008,40 ( 2 ) : 1-60.
  • 7Arnold W M, Marcel W, Simone S, et al. Content-based image retrieval at the end of the early years[ J ]. IEEE Trans on Pat- tern Analysis and Machine Intelligence,2000,22 ( 12 ) : 1349-1380.
  • 8Peter E, Christine S. Towards a comprehensive survey of the semantic gap in visual image retrieval [ C ]//Proc of LNCS. [s. 1. ] :[s. n. ] ,2003.
  • 9Datta R,Ge W,Li J,et al. Toward bridging the annotation-re- trieval gap in image search [ J ]. IEEE Multimedia, 2007,14 (3) :24-35.
  • 10Eakins J P. Automatic image content retrieval-are we getting anywhere [ C ]//Proceedings of the third international confer- ence on electronic library and visual information researctl. Mil- ton Keynes : De Monffort University, 1996 : 123-135.

二级参考文献117

  • 1毛峡,丁玉宽,牟田一弥.图像的情感特征分析及其和谐感评价[J].电子学报,2001,29(z1):1923-1927. 被引量:26
  • 2谭国真,高文.KBMDS:基于知识的地图数据库系统[J].大连理工大学学报,1996,36(1):105-109. 被引量:2
  • 3庄越挺.智能多媒体信息分析与检索的研究[博士论文].杭州:浙江大学,1998..
  • 4徐冬溶.设计中形象类比生成的研究[博士论文].杭州:浙江大学,1995..
  • 5李向阳.基于内容的图像数据库检索技术极其模型的研究[博士论文].浙江大学,1999..
  • 6KT斯托曼.情绪心理学[M].辽宁人民出版社,1986..
  • 7JohannesItten.设计与形态-包豪斯基础课程(Design and Form-The Basic Course at the Bauhous)[M].上海人民美术出版社,1992..
  • 8孟绍兰 等.当代心理学研究[M].北京大学出版社,1993..
  • 9VapnikV 张学工译.统计学习理论的本质(The Nature of Statistical Learning Theory)[M].北京:清华大学出版社,1999..
  • 10易晓编著.现代构成艺术[M].武汉大学出版社,2000..

共引文献275

同被引文献48

引证文献5

二级引证文献28

;
使用帮助 返回顶部