期刊文献+

基于重构顺序调整机制的理性秘密共享方案 被引量:2

Rational Secret Sharing Scheme Based on Reconstruction Order Adjustment Mechanism
下载PDF
导出
摘要 理性秘密共享的研究目标是通过引入自利的理性参与者,设计适用于现实环境的公平的秘密共享方案.然而,由于要求秘密分发者准确知道理性参与者的各种收益,且未考虑秘密重构博弈的稳定性,导致在现有理性秘密共享方案的执行过程中,不能完全避免出现遵循协议执行的参与者未获得共享秘密、而偏离协议执行的参与者却获得共享秘密的不公平情形.针对上述问题,结合机制设计的激励相容原理,通过让秘密分发者随机选择所需重构轮数,设计了能有效约束理性参与者自利性行为的重构顺序调整机制,构造具有未知重构轮数的理性秘密共享方案.分析表明所提方案能实现秘密重构博弈的子博弈完美均衡,确保秘密重构博弈的稳定性,使得所提方案的公平性得以保证.通过从通信方式、重构轮数和前提假设3个方面与现有典型方案进行对比分析,表明所提方案具有较好的实用性. Rational secret sharing aims to design the realistic secret sharing scheme and to guarantee its fairness by introducing selfish players.However,due to the requirement that the dealer knows all kinds of players’payoffs accurately,the stability of the reconstruction game is not taken into account.It might cause that,during the execution of the existing rational secret sharing schemes,the players who deviate from the prescribed protocol obtain the secret,whereas the others who follow the prescribed protocol faithfully cannot.To prevent this unfair solution,combined with the incentive compatibility principle of mechanism design,this paper makes use of the method that the number of reconstruction rounds is randomly chosen by the dealer,and devises the reconstruction order adjustment mechanism to effectively restrict the selfishness of rational players.Then,a rational secret sharing scheme with unknown reconstruction rounds is proposed.The analysis shows that the proposed scheme can realize the subgame perfect equilibrium of the reconstruction game and ensure its stability.That is,the fairness of the proposed scheme is achieved.In addition,comparied with several typical schemes in communication type,the number of reconstruction rounds and additional assumption,the results illustrate that the presented scheme is not only fair,but also has better practicality.
出处 《计算机研究与发展》 EI CSCD 北大核心 2015年第10期2332-2340,共9页 Journal of Computer Research and Development
基金 国家自然科学基金面上项目(61372075) 国家自然科学基金联合基金项目(U1135002 U1304606) 国家自然科学基金青年科学基金项目(61202389 61100230)
关键词 理性秘密共享 重构顺序调整机制 收益计算 公平性 子博弈完美均衡 rational secret sharing reconstruction order adjustment mechanism payoff computing fairness subgame perfect equilibrium
  • 相关文献

参考文献24

  • 1Halpern J, Teague V. Rational secret sharing and multiparty computation: Extended abstract [C] //Proe of the 36th Annual ACM Symp on Theory of Computing. New York: ACM, 2004: 623-632.
  • 2Asharov G, Lindell Y. Utility dependence in correct and fair rational secret sharing [J]. Journal of Cryptology, 2011, 24 (1): 157-202.
  • 3Ong S J, Parkes D V, Alon R, et al. Fairness with an honest minority and a rational majority [G] //LNCS 5444: Proc of the 6th Theory of Cryptography Conf. Berlin: Springer, 2009: 36-53.
  • 4Kol G, Naor M. Cryptography and game theory: Design protocols for exchanging information [G]//LNCS 4948: Proc of the 5th Theory of Cryptography Conf. Berlin: Springer, 2008:320-339.
  • 5Gordon S D, Katz J. Rational secret sharing revisited [G] // LNCS 4116: Proc of the 5th Int Conf on Security and Cryptography for Networks. Berlin.. Springer, 2006; 229- 241.
  • 6Kol G, Naor M. Games for exchanging information[C] // Proc of the 40th Annual ACM Syrup on Theory of Computing. New York: ACM, 2008: 423-432.
  • 7Fuchsbauer G, Katz J, Naccache D. Efficient secret sharing in the standard communication model[G]//LNCS 5978: Proc of the 7th Theory of Cryptography Conf. Berlin: Springer, 2010:419-436.
  • 8ZHANG ZhiFang,LIU MuLan.Rational secret sharing as extensive games[J].Science China(Information Sciences),2013,56(3):65-77. 被引量:12
  • 9Sourya J D, Asim K P. Achieving crrectness in fair rational secret sharing [G] //LNCS 8257: Proc of the 12th Int Conf on Cryptology and Network Security. Berlin: Springer, 2013: 139-161.
  • 10Varsha D, Mahnush M, Jared S. Scalable mechanisms for rational secret sharing [J].Distributed Computing, 2015, 28 (3) :171-187.

二级参考文献63

  • 1郭渊博,马建峰.分布式环境下一种实用的先应式秘密共享方法[J].系统工程与电子技术,2004,26(6):799-805. 被引量:7
  • 2庞辽军,姜正涛,王育民.基于一般访问结构的多重秘密共享方案[J].计算机研究与发展,2006,43(1):33-38. 被引量:22
  • 3SHAMIR A.How to share a secret[J].Communications of the ACM,1979,22(11):612-613.
  • 4HALPERN J,TEAGUE V.Rational secret sharing and multi-party computation:extended abstract[C]//Proc of 36t ACM Symposium on Theory of Computing(STOC).Chicago:ACM Press,2004:623-632.
  • 5HALPERN J.Computer science and game theory:A brief survey[M/OL]//MACMILLAN P.2nd ed.The New Palgrave Dictionary of Economics.http://www.cs.cornell.edu/home/halpern/.
  • 6DODIS Y,RABIN T.Cryptography and game theory[M]//NISAN N.DEN T R,TARDOS E,et al.Algorithmic Game Theory.Cambridge:Cambridge University Press,2007:181-207.
  • 7DODIS Y,HALEVI S,RABIN T.A cryptographic solution to a game theoretic problem[C]//Proc of CRYPTO'2000.Berlin:Springer,2000,1880:112-131.
  • 8LEPINSKI M,MICALI S,PEIKERT C,et al.Completely fair SFE and coalition-safe cheap talk[C]//Proc of 23rd ACM Symp Principles of Distributed Computing.New York:ACM.2004:1-10.
  • 9IZMALKOV S,MICAH S,LEPINSKI M.Rational secure computation and ideal mechanism design[C]//Proc of 46th IEEE Symp Foundations of Computer Science.Pittsburgh:IEEE,2005:585-595.
  • 10LYSYANSKAYA A,TRIANDOPOULOS N.Rationality and adversarial behavior in multi-party computation(extended abstract)[J].Lecture Notes in Computer Science,2006,4117:180-197.

共引文献20

同被引文献7

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部