期刊文献+

呼叫中心提示时间与顾客耐心的主从博弈模型 被引量:8

Stackelberg game model for call centers with delay information
下载PDF
导出
摘要 研究呼叫中心与顾客之间的提示排队时间确定与顾客耐心度选择问题.针对一类M/M/N+M呼叫中心排队模型,研究了排队时间提示对顾客耐心心理与放弃行为的影响,并建立了基于呼叫中心和顾客效用函数的非合作Stackelberg博弈模型,目标是求呼叫中心和顾客效用值最大的最优策略.采用排队论分析了呼叫中心的排队过程,给出了二分法和不动点结合的系统性能指标求解算法.最后,通过数值实验,分析了提示时间可靠性和顾客耐心变化率对性能指标影响规律,对比了不同博弈策略下的呼叫中心和顾客的效用值实验结果表明了方法的合理性和有效性. This paper studies a decision problem on waiting delay time and patience time by a call center and customers, respectively. Firstly, for a M/M/N+M call center queue model, a non-cooperative Stackelberg game model is formulated to maximize the value of the utility function based on the impact of delay time on the customers' impatience psychology. Secondly, the performance of the queuing process is obtained by the combination of the bisection algorithm and the fixed point algorithm after the process analysis with queue theory. Finally, the impact of the delay time reliability and the patient change rate on the system performance is analyzed with the numerical results. Moreover, this paper compares the value of the utility function of the call center and the customers under different game strategies and effectiveness of the method. The experimental results illustrate the reasonability
出处 《系统工程学报》 CSCD 北大核心 2015年第5期619-627,共9页 Journal of Systems Engineering
基金 国家自然基金资助项目(71271052) 中央高校基本科研业务费专项资金资助项目(N120804003)
关键词 呼叫中心 提示排队时间 顾客耐心 博弈模型 直接退出和中途放弃 call center customer patience delay information game model balking and reneging
  • 相关文献

参考文献17

  • 1Aksin O Z,Armony M,Mehrotra V.The modem call-center:A multi-disciplinary perspective on operations management research[J].Production and Operations Management,2007,16(6):665-688.
  • 2Gans N,Koole G,Mandelbaum A.Telephone call centers:Tutorial,review,and research prospects[J].Manufacturing & Service Operation Management,2003,5(2):73-141,.
  • 3Zohar E,Mandelbaum A,Shimkin N.Adaptive behavior of impatient customers in tele-queues:Theory and empirical support[J].Management Science,2002,48(4):566-583.
  • 4Bitran G R,Ferrer J-C,Rocha e Oliviera P.Managing customer experiences:Perspectives on the temporal aspects of service encoun- ters[J].Manufacturing & Service Operations Management,2008,10(1):61-83.
  • 5Guo P,Zipkin P.Analysis and comparison of queues with different levels of delay infonnation[J].Management Science,2007,53(6):962-970.
  • 6Ibrahim R,Whitt W.Real-Time delay estimation based on delay history[J].Manufacturing & Service Operations Management,2009,11(3):397-415.
  • 7Armony M,Shimkin N,Whitt W.The impact of delay announcements in many-server queues with abandonment[J].Operations Research,2009,57(1):66-81.
  • 8Jouini O,Dallery Y,Nait A R.Analysis of the impact of team-based organizations in call center management[J].Management Science,2008,54(2):400-414.
  • 9Jouini O,Zeltyn A,Dallery Y.Call centers with delay information:Models and insights[J].Manufacturing & Service Operations Management,2011,13(4):534-548.
  • 10Mandelbaum A,Momcilovic P.Queues with many servers and impatient customers[J].Mathematics of Operations Management,2012,37(1):41-65.

二级参考文献40

  • 1马寿峰,卜军峰,张安训.交通诱导中系统最优与用户最优的博弈协调[J].系统工程学报,2005,20(1):30-37. 被引量:22
  • 2李振龙.基于Stackelberg博弈的动态用户最优配流和信号控制[J].控制理论与应用,2005,22(3):353-358. 被引量:5
  • 3朱仁祥,朱翼隽,方基奎.重试,反馈M/M/s/k排队的呼叫中心性能分析[J].系统工程学报,2006,21(6):613-620. 被引量:4
  • 4肖条军.博弈论及其应用[M].上海:上海三联书店,2003.
  • 5RAMADURAI, GITAKRISHNAN, UKKUSURI, et al. Dynamic traffic equilibrium: theoretical and experimental network game results in the single-bottleneck bodel-TRB(07-3390)[C]. Washington, DC: The Transportation Research Board(TRB), 2007.
  • 6PARK DONGIOO, KIM HANSOO, HONG SEOKKI, et al. Location-based dynamic route guidance system of Korea: system design, algorithms, and initial results-TRB(07-1074)[C]. Washington, DC: The Transportation Research Board(TRB), 2007.
  • 7Stackelberg H V. The theory of the market economy[M]. Oxford : Oxford University Press, 1952: 97-105.
  • 8盛昭瀚.主从递阶决策[M].北京:科学出版社,1998:3-17.
  • 9Basar T, Olsder G J. Dynamic noncooperative games[M]. New York: Academic Press, 1995: 25-37.
  • 10Pang J S, Fukushima M. Quasi-variational inequalities, generalized Nash equilibri and multi-leader-follower games[J]. Computational Management Science, 2005, 2(1): 21-56.

共引文献41

同被引文献56

引证文献8

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部